



# MIW03M Series EC Note

DC-DC CONVERTER 3.5W, DIP Package

#### **Features**

- Industrial Standard DIP-24 Package
- ➤ Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ►I/O Isolation 5000VAC with Reinforced Insulation, rated for 250Vrms Working Voltage
- ► Creepage & Clearance Distance meet 8mm
- ► Low I/O Leakage Current < 2µA
- ▶ Operating Ambient Temp. Range -40°C to 96°C
- No Min. Load Requiremnt
- ► Under-Voltage, Overload/Voltage and Short Circuit Protection
- ► Conducted EMI EN 55011 Class A Approved
- ► Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3<sup>rd</sup> Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking



- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- ➤ Communications equipment

# **Product Overview**

The MINMAX MIW03M series is a new range of high performance 3.5W medical approved DC-DC converter within encapsulated DIP-24 package which specifically design for medical applications. There are 21 models available for input voltage of 5, 12, 24, 48VDC with wide 2:1 input range and fixed output voltage. The I/O isolation is specified for 5000VAC with reinforced insulation, which rated for 250Vrms working voltage. Further features include under-voltage, overload, over voltage, short circuit protection, no min. load requirement, conducted EMI EN 55011 class A approved, low I/O leakage current 2µA max. and operating ambient temp. range by -40°C to 96°C without derating by high efficiency up to 87%. MIW03M series conform to 4th edition medical EMC standard, medical safety with 2xMOPP (Means Of Patient Protection) per 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1 approved and 8mm creepage and clearance. The MIW03M series offer the best solution for demanding applications in medical instrument requesting a certified supplementary and reinforced insulation system to comply with latest medical safety approval for 2xMOPP requirement.

#### Table of contents

| Model Selection Guide        | P2  | Recommended Pad Layout for Single & Dual Output Converter | P26 |
|------------------------------|-----|-----------------------------------------------------------|-----|
| Input Specifications         | P2  | Test Setup                                                | P27 |
|                              |     | Technical Notes                                           |     |
| Isolation, Safety Standards  | P3  | Packaging Information                                     | P28 |
| General Specifications       | P3  | Wave Soldering Considerations                             | P28 |
| EMC Specifications           | P3  | Hand Welding Parameter                                    | P28 |
| Environmental Specifications | P4  | Part Number Structure                                     | P29 |
| Characteristic Curves        | P5  | MTBF and Reliability                                      | P29 |
| Package Specifications       | P26 | ·                                                         |     |

Date:2023-02-20 Rev:6





MIW03M Series - EC Notes



| <b>Model Selection</b> | Guide           |         |         |            |          |            |                 |            |
|------------------------|-----------------|---------|---------|------------|----------|------------|-----------------|------------|
| Model                  | Input           | Output  | Output  | Inp        | out      | Over       | Max. capacitive | Efficiency |
| Number                 | Voltage         | Voltage | Current | Cur        | rent     | Voltage    | Load            | (typ.)     |
|                        | (Range)         |         | Max.    | @Max. Load | @No Load | Protection |                 | @Max. Load |
|                        | VDC             | VDC     | mA      | mA(typ.)   | mA(typ.) | VDC        | μF              | %          |
| MIW03-05S05M           |                 | 5       | 700     | 843        |          | 6.2        | 750             | 83         |
| MIW03-05S058M          |                 | 5.8     | 600     | 839        | 20       | 6.2        | 560             | 83         |
| MIW03-05S12M           | 5               | 12      | 290     | 829        | 20       | 15         | 130             | 84         |
| MIW03-05S15M           | (4.5 ~ 9)       | 15      | 235     | 839        |          | 18         | 100             | 84         |
| MIW03-05D12M           |                 | ±12     | ±145    | 829        | 25       | ±15        | 75#             | 84         |
| MIW03-05D15M           |                 | ±15     | ±115    | 821        | 35       | ±18        | 56#             | 84         |
| MIW03-12S05M           |                 | 5       | 700     | 351        |          | 6.2        | 750             | 83         |
| MIW03-12S12M           | 40              | 12      | 290     | 333        | 8        | 15         | 130             | 87         |
| MIW03-12S15M           | 12              | 15      | 235     | 338        |          | 18         | 100             | 87         |
| MIW03-12D12M           | (9~18)          | ±12     | ±145    | 333        | 42       | ±15        | 75#             | 87         |
| MIW03-12D15M           |                 | ±15     | ±115    | 330        | 13       | ±18        | 56#             | 87         |
| MIW03-24S05M           |                 | 5       | 700     | 176        |          | 6.2        | 750             | 83         |
| MIW03-24S12M           | 0.4             | 12      | 290     | 169        |          | 15         | 130             | 86         |
| MIW03-24S15M           | 24<br>(18 ~ 36) | 15      | 235     | 169        | 6        | 18         | 100             | 87         |
| MIW03-24D12M           | (10 ~ 30)       | ±12     | ±145    | 167        |          | ±15        | 75#             | 87         |
| MIW03-24D15M           |                 | ±15     | ±115    | 167        |          | ±18        | 56#             | 86         |
| MIW03-48S05M           |                 | 5       | 700     | 88         |          | 6.2        | 750             | 83         |
| MIW03-48S12M           | 40              | 12      | 290     | 84         |          | 15         | 130             | 86         |
| MIW03-48S15M           | 48<br>(36, 75)  | 15      | 235     | 86         | 4        | 18         | 100             | 85         |
| MIW03-48D12M           | (36 ~75)        | ±12     | ±145    | 86         |          | ±15        | 75#             | 84         |
| MIW03-48D15M           |                 | ±15     | ±115    | 86         |          | ±18        | 56#             | 84         |

# For each output

| Input Specifications              |                                         |      |          |         |      |
|-----------------------------------|-----------------------------------------|------|----------|---------|------|
| Parameter                         | Conditions / Model                      | Min. | Тур.     | Max.    | Unit |
|                                   | 5V Input Models                         | -0.7 |          | 15      |      |
| land Compa Valtaga (4 and game)   | 12V Input Models                        | -0.7 |          | 25      |      |
| Input Surge Voltage (1 sec. max.) | 24V Input Models                        | -0.7 |          | 50      |      |
|                                   | 48V Input Models                        | -0.7 |          | 100     |      |
|                                   | 5V Input Models                         |      |          | 4.5     |      |
|                                   | 12V Input Models                        |      |          | 9       | VDC  |
| Start-Up Threshold Voltage        | 24V Input Models                        |      |          | 18      | VDC  |
|                                   | 48V Input Models                        |      |          | 36      |      |
|                                   | 5V Input Models                         |      | 4        |         |      |
| Haday Vallana Obutdaya            | 12V Input Models                        |      | 8        |         |      |
| Under Voltage Shutdown            | 24V Input Models                        |      | 16       |         |      |
|                                   | 48V Input Models                        |      | 34       |         |      |
| Start Up Time (Power On)          | Nominal Vin and Constant Resistive Load |      |          | 30      | ms   |
| nput Filter                       | All Models                              |      | Internal | Pi Type |      |

Date:2023-02-20 Rev:6

MIW03M Series – EC Notes 2



| Output Specifications               |                    |                                      |              |               |       |                   |
|-------------------------------------|--------------------|--------------------------------------|--------------|---------------|-------|-------------------|
| Parameter                           | Con                | ditions                              | Min.         | Тур.          | Max.  | Unit              |
| Output Voltage Setting Accuracy     |                    |                                      |              |               | ±1.0  | %Vnom.            |
| Output Voltage Balance              | Dual Output,       | Balanced Loads                       |              | ±0.5          | ±2.0  | %                 |
| Line Regulation                     | Vin=Min. to M      | lax. @Full Load                      |              |               | ±0.5  | %                 |
| Load Regulation                     | lo=0%              | lo=0% to 100%                        |              |               |       | %                 |
| Load Cross Regulation (Dual Output) | Asymmetrical Load  | Asymmetrical Load 25%/100% Full Load |              |               | ±5.0  | %                 |
| Minimum Load                        |                    | No minimum Load I                    | Requirement  |               |       |                   |
| Ripple & Noise                      | 0-20 MHz Bandwidth | Measured with a 1µF MLCC             |              |               | 70    | mV <sub>P-P</sub> |
| Transient Recovery Time             | 050/ 1 1           | Olar Olara                           |              | 300           |       | μsec              |
| Transient Response Deviation        | 25% L0ad           | Step Change                          |              | ±3            | ±5    | %                 |
| Temperature Coefficient             |                    |                                      |              | ±0.01         | ±0.02 | %/°C              |
| Over Load Protection                |                    |                                      | 150          |               | %     |                   |
| Short Circuit Protection            |                    | Continuous, Automatic Recovery       | (Hiccup Mode | e 0.5Hz typ.) |       |                   |

| Isolation, Safety Standards |                                                          |                  |                           |                |       |
|-----------------------------|----------------------------------------------------------|------------------|---------------------------|----------------|-------|
| Parameter                   | Conditions                                               | Min.             | Тур.                      | Max.           | Unit  |
| I/O loolation Voltage       | 60 Seconds                                               | 5000             |                           |                | VAC   |
| I/O Isolation Voltage       | Reinforced insulation, rated for 250Vrms working voltage | 5000             |                           |                | VAC   |
| Leakage Current             | 240VAC, 60Hz                                             |                  |                           | 2              | μA    |
| I/O Isolation Resistance    | 500 VDC                                                  | 10               |                           |                | GΩ    |
| I/O Isolation Capacitance   | 100kHz, 1V                                               |                  |                           | 40             | pF    |
| Cofety Chandrade            | ANSI/AAMI ES60601-1, CAN/                                | CSA-C22.2 No     | o. 60601-1                |                |       |
| Safety Standards            | IEC/EN 60601-1 3 <sup>rd</sup> E                         | dition 2xMOP     | Р                         |                |       |
| Safety Approvals            | ANSI/AAMI ES60601-1 2xMOPP recognition(UL cert           | tificate), IEC/E | N 60601-1 3 <sup>rd</sup> | Edition(CB-rep | oort) |

| General Specifications |                                   |           |      |      |       |
|------------------------|-----------------------------------|-----------|------|------|-------|
| Parameter              | Conditions                        | Min.      | Тур. | Max. | Unit  |
| Switching Frequency    |                                   |           | 330  |      | kHz   |
| MTBF(calculated)       | MIL-HDBK-217F@25°C, Ground Benign | 5,815,448 |      |      | Hours |

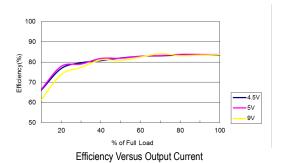
| <b>EMC Specifications</b> |                              |                                      |                              |             |  |
|---------------------------|------------------------------|--------------------------------------|------------------------------|-------------|--|
| Parameter                 |                              | Standards & Level                    |                              | Performance |  |
| TMI.                      | Conduction                   | EN 55011 Without external components |                              | Class A     |  |
| EMI <sub>(5)</sub>        | Radiation                    | EIN 000 I I                          | With external components     | Class A     |  |
|                           | EN 60601-1-2 4 <sup>th</sup> |                                      |                              |             |  |
|                           | TCD.                         | Direct discharge                     | Indirect discharge HCP & VCP | _ A         |  |
|                           | ESD                          | EN 61000-4-2 Air ± 15kV              | Contact ± 8kV                |             |  |
| TMC                       | Radiated immunity            | EN 61000                             | 0-4-3 10V/m                  | A           |  |
| EMS <sub>(5)</sub>        | Fast transient               | EN 6100                              | 0-4-4 ±2kV                   | A           |  |
|                           | Surge                        | EN 6100                              | 0-4-5 ±2kV                   | A           |  |
|                           | Conducted immunity           | EN 61000                             | -4-6 10Vrms                  | A           |  |
|                           | PFMF                         | EN 61000                             | -4-8 100A/m                  | А           |  |

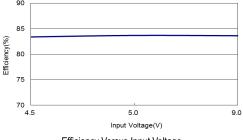
Date:2023-02-20 Rev:6 MIW03M Series – EC Notes 3



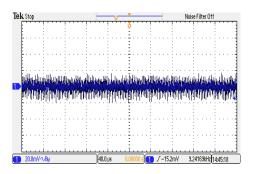
| Environmental Specifications                                   |      |      |          |  |  |
|----------------------------------------------------------------|------|------|----------|--|--|
| Parameter                                                      | Min. | Max. | Unit     |  |  |
| Operating Ambient Temperature Range (See Power Derating Curve) | -40  | +96  | °C       |  |  |
| Case Temperature                                               |      | +105 | °C       |  |  |
| Storage Temperature Range                                      | -50  | +125 | °C       |  |  |
| Humidity (non condensing)                                      |      | 95   | % rel. H |  |  |
| Lead Temperature (1.5mm from case for 10Sec.)                  |      | 260  | °C       |  |  |

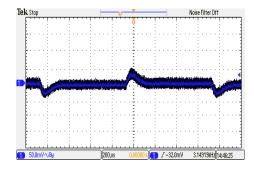
#### Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.


Date:2023-02-20 Rev:6

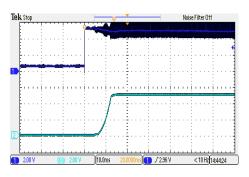


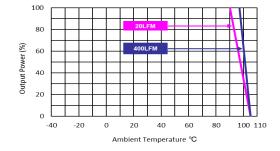




All test conditions are at 25°C The figures are identical for MIW03-05S05M






Efficiency Versus Input Voltage Full Load

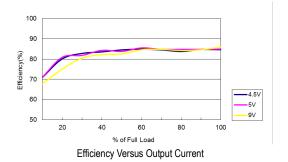


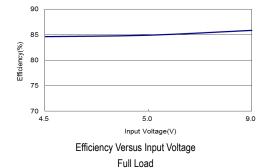


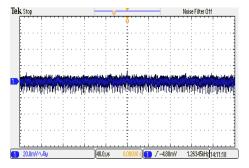

Typical Output Ripple and Noise  $V_{in}$ = $V_{in}$  nom; Full Load

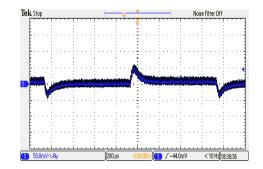
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}$ = $V_{in nom}$ 





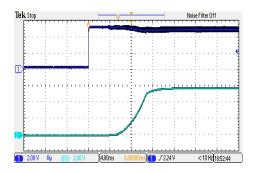


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

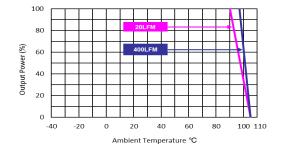

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 




All test conditions are at 25°C The figures are identical for MIW03-05S058M





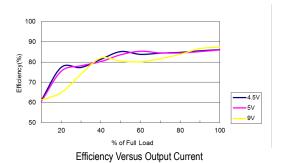



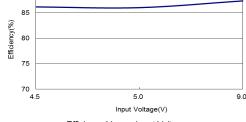



Typical Output Ripple and Noise  $V_{in}$ = $V_{in nom}$ ; Full Load

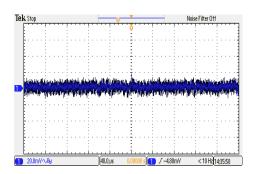
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 



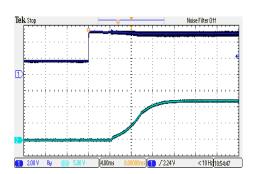




Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}$  ; Full Load

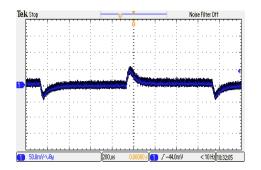
Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>



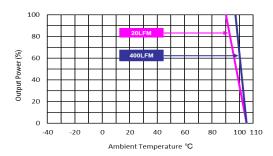

All test conditions are at 25°C  $\,$  The figures are identical for MIW03-05S12M  $\,$ 







Efficiency Versus Input Voltage Full Load



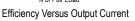

Typical Output Ripple and Noise  $V_{in}$ = $V_{in nom}$ ; Full Load



Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}$  ; Full Load

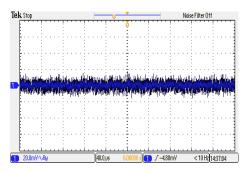


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 

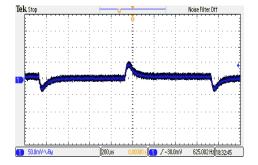



Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>

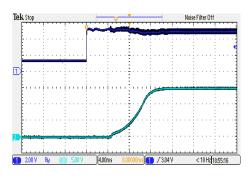



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-05S15M  $\,$ 

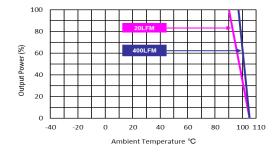








Efficiency Versus Input Voltage Full Load

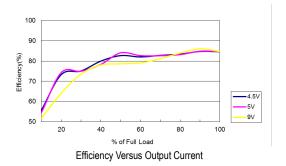


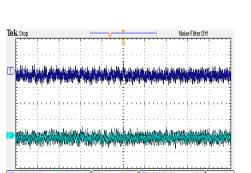

Typical Output Ripple and Noise  $V_{in}$ = $V_{in nom}$ ; Full Load



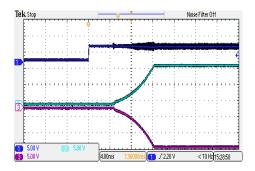
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 



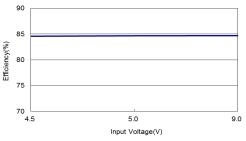

Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}$  ; Full Load



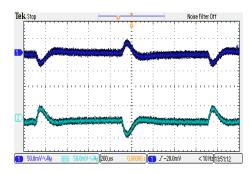

Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>



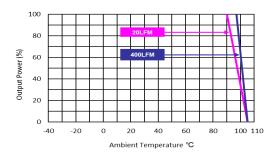

All test conditions are at 25°C  $\,$  The figures are identical for MIW03-05D12M  $\,$ 







Typical Output Ripple and Noise  $V_{in}$ = $V_{in nom}$ ; Full Load

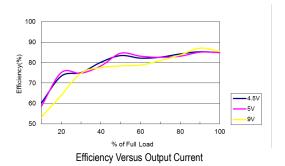


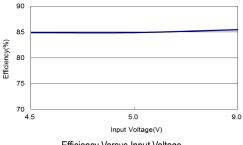

Typical Input Start-Up and Output Rise Characteristic V<sub>in</sub>=V<sub>in nom</sub>; Full Load



Efficiency Versus Input Voltage Full Load



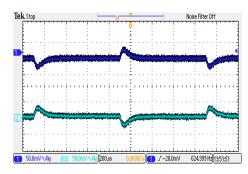

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 

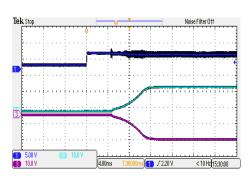



Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-05D15M  $\,$ 

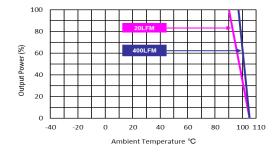






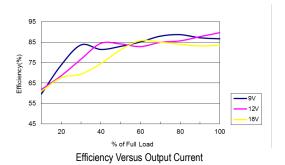


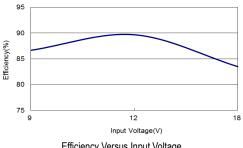

< 10 Hz 13:37:51





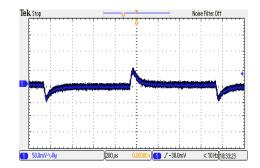
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 

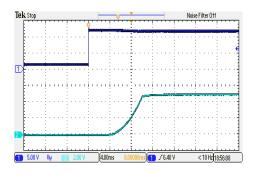



Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>

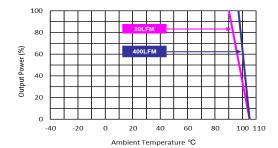



All test conditions are at 25°C The figures are identical for MIW03-12S05M







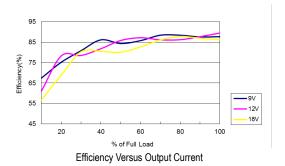



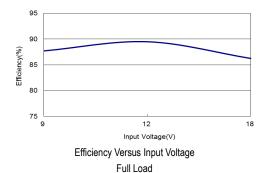


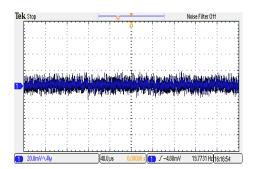


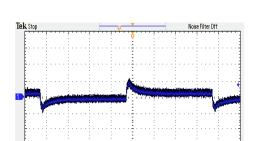

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}=V_{in\ nom}$ 







Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}$  ; Full Load

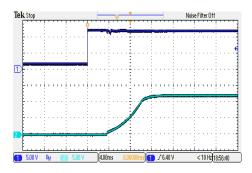

Derating Output Current Versus Ambient Temperature and Airflow V<sub>in</sub>=V<sub>in nom</sub>

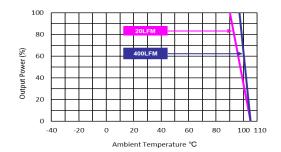



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-12S12M  $\,$ 







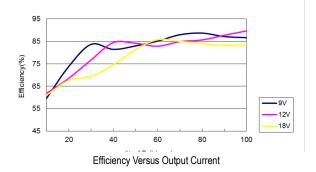



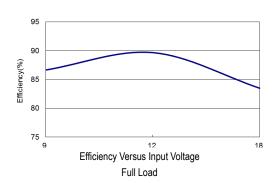

Typical Output Ripple and Noise  $V_{in}$ = $V_{in nom}$ ; Full Load

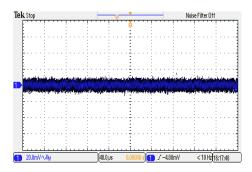
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

18:34:16 €24.978 Hz

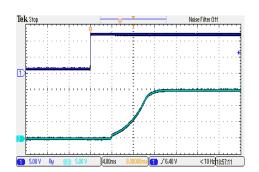




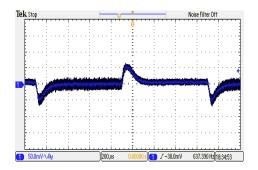


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 


Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} = V_{\text{in nom}}$ 

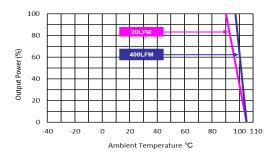



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-12S15M  $\,$ 





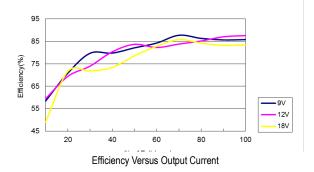


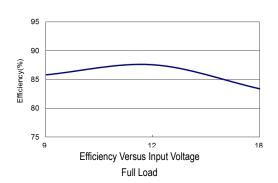


Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

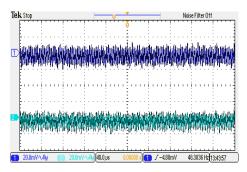


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

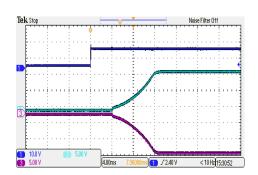



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

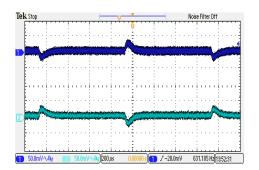




Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

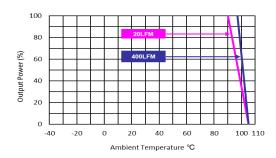



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-12D12M  $\,$ 





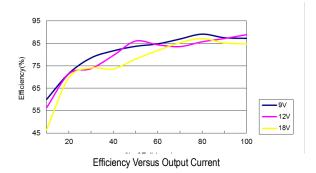


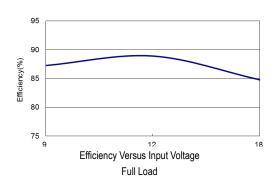


Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 



Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$ 

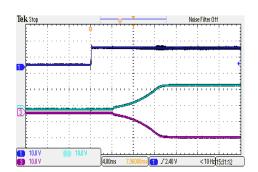



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

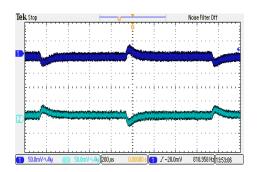



Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in norm}}$ 

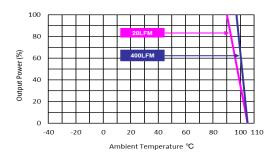



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-12D15M  $\,$ 





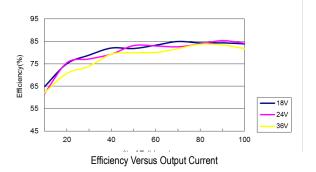


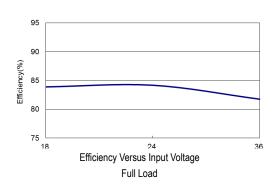


Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

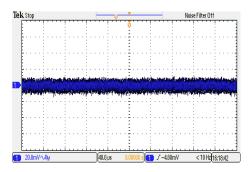


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

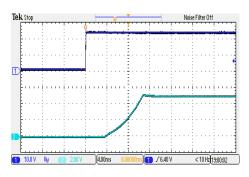



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}$ = $V_{in nom}$ 

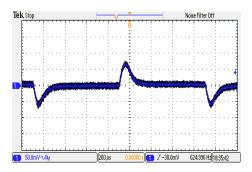




Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

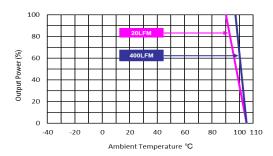



All test conditions are at 25°C  $\,$  The figures are identical for MIW03-24S05M  $\,$ 





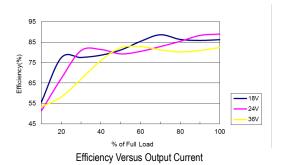


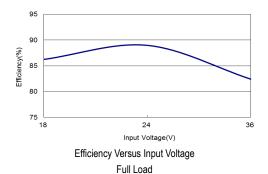


Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

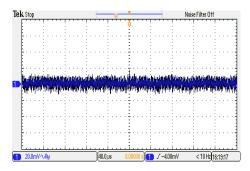


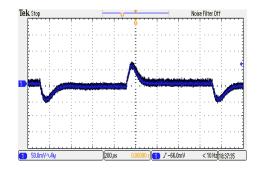
Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 




Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}$ = $V_{in nom}$ 

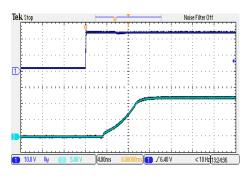


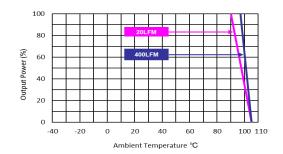


Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-24S12M  $\,$ 





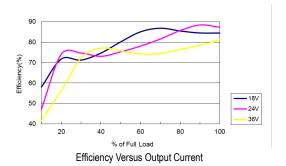



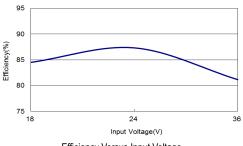



Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\text{Full Load}$ 

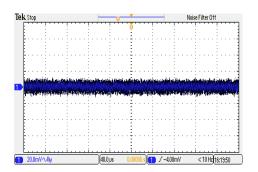
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

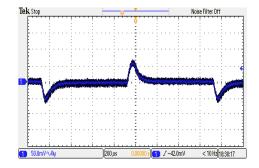






Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

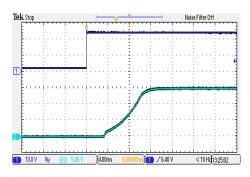
Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

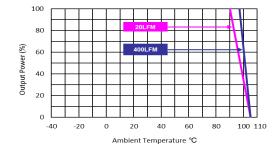




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-24S15M  $\,$ 






Efficiency Versus Input Voltage Full Load

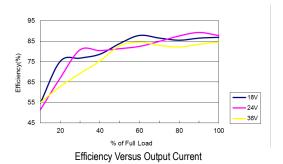


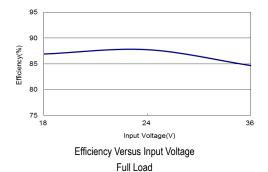


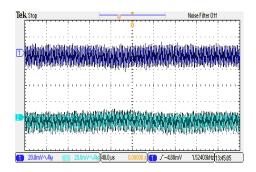

Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

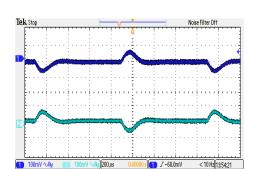
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom





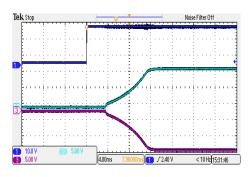


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

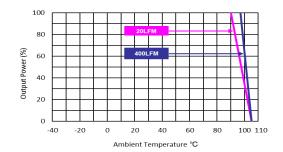

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-24D12M  $\,$ 





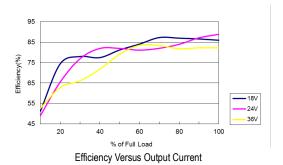



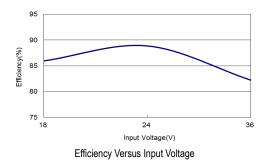



Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



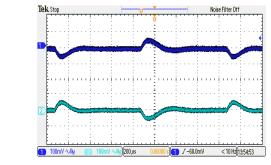


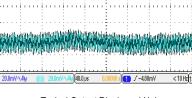


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$ 

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

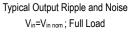


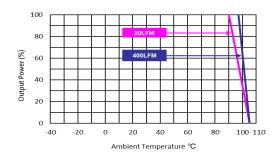
All test conditions are at 25°C  $\,$  The figures are identical for MIW03-24D15M  $\,$ 

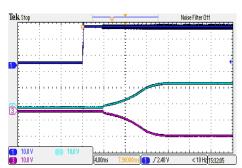



Full Load


NoiseFilter Off


Tek Stop

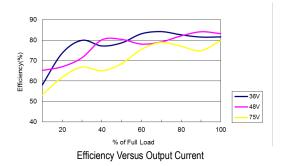


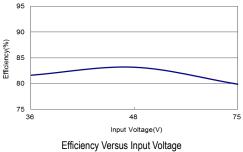



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom









Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

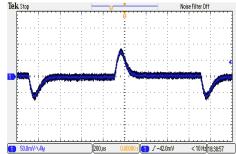
Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

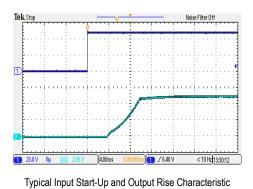


All test conditions are at 25°C The figures are identical for MIW03-48S05M







Tek Stop

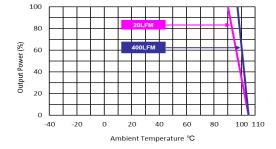

Noise Filter Off

cull of the characteristic for the char





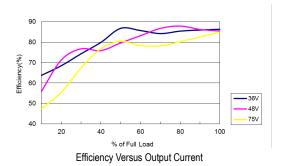


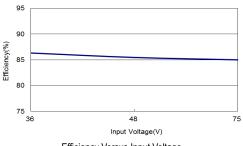



 $V_{\text{in}}\text{=}V_{\text{in nom}}$  ; Full Load

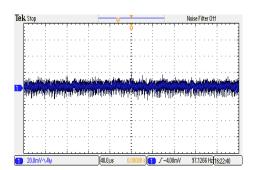
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

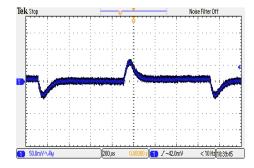



49.2449 Hz 16:20:23



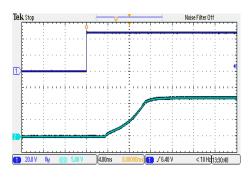

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

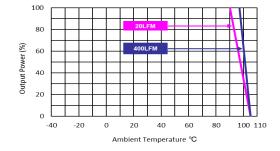




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-48S12M  $\,$ 






Efficiency Versus Input Voltage Full Load

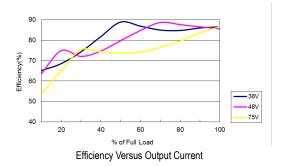


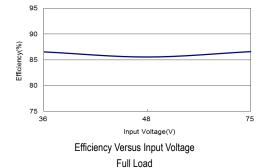


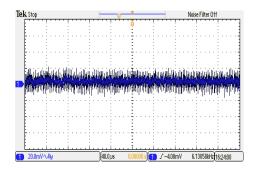

Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

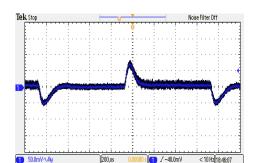
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}$ = $V_{in nom}$ 





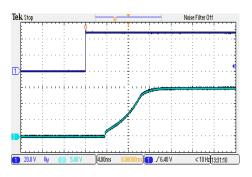


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

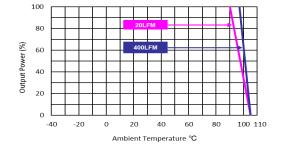

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} = V_{\text{in nom}}$ 




All test conditions are at 25°C The figures are identical for MIW03-48S15M





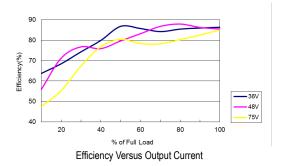



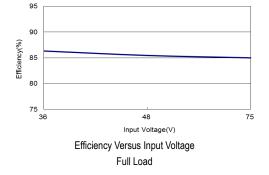


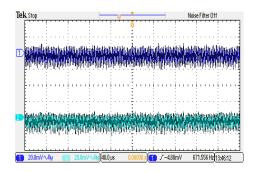

Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

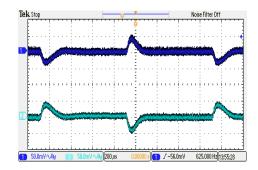
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom





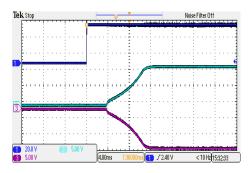


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$ 

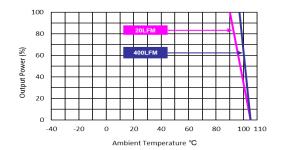

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-48D12M  $\,$ 





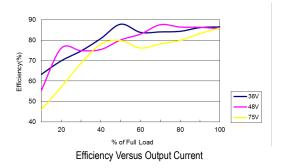



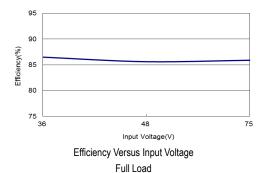


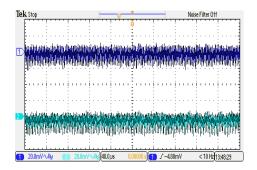

Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

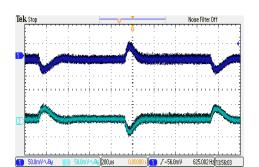
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom





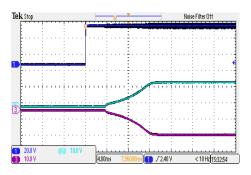


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$ 

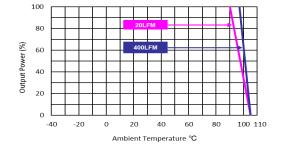

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 




All test conditions are at 25°C  $\,$  The figures are identical for MIW03-48D15M  $\,$ 



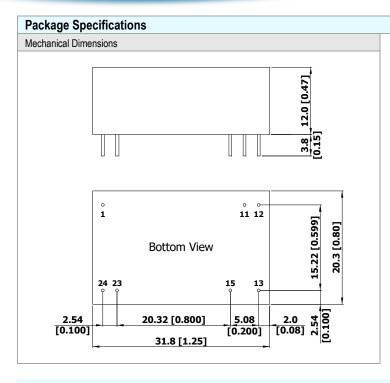





Typical Output Ripple and Noise  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom






Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$ 

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} \! = \! V_{\text{in nom}}$ 

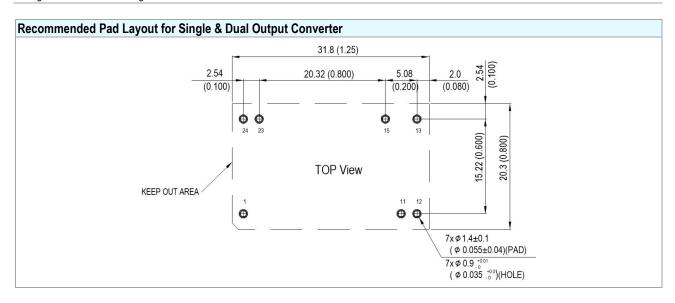




| Pin Connections |               |             |                         |  |  |  |  |  |
|-----------------|---------------|-------------|-------------------------|--|--|--|--|--|
| Pin             | Single Output | Dual Output | Diameter<br>mm (inches) |  |  |  |  |  |
| 1               | +Vin          | +Vin        | Ø 0.6 [0.02]            |  |  |  |  |  |
| 11              | No Pin        | Common      | Ø 0.6 [0.02]            |  |  |  |  |  |
| 12              | -Vout         | No Pin      | Ø 0.6 [0.02]            |  |  |  |  |  |
| 13              | +Vout         | -Vout       | Ø 0.6 [0.02]            |  |  |  |  |  |
| 15              | No Pin        | +Vout       | Ø 0.6 [0.02]            |  |  |  |  |  |
| 23              | -Vin          | -Vin        | Ø 0.6 [0.02]            |  |  |  |  |  |
| 24              | -Vin          | -Vin        | Ø 0.6 [0.02]            |  |  |  |  |  |

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

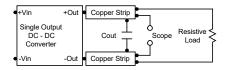

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

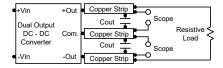
## **Physical Characteristics**

Case Size : 31.8x20.3x12.0mm (1.25x0.80x0.47 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Weight : 15.5g




#### **Test Setup**

#### Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.





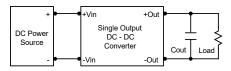
#### **Technical Notes**

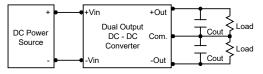
#### Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

#### Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


#### Input Source Impedance

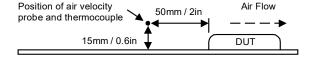

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 kHz) capacitor of a  $22\mu\text{F}$  for the 5V input devices and a  $10\mu\text{F}$  for the 12V input devices and a  $4.7\mu\text{F}$  for the 24V input devices and a  $2.2\mu\text{F}$  for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.



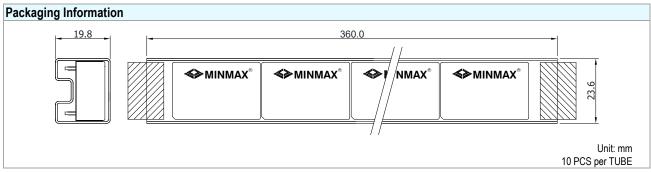
#### Output Ripple Reduction

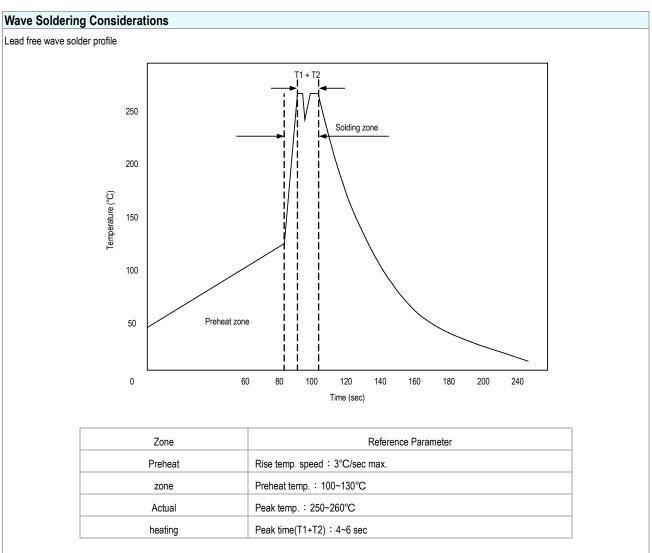
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.






#### Maximum Capacitive Load


The MIW03M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.


#### Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.









# **Hand Welding Parameter**

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C



| Part I | Number Struc | ture                |              |   |     |        |        |        |     |       |            |      |        |      |             |
|--------|--------------|---------------------|--------------|---|-----|--------|--------|--------|-----|-------|------------|------|--------|------|-------------|
| _M_    | <u> </u>     | W                   | 03           | - |     |        | 05     |        |     |       | S          |      | 05     |      | M           |
|        | Package Type | Wide 2:1            | Output Power |   | Ir  | put Vo | oltage | e Rang | ge  | Outpu | t Quantity | Out  | put Vo | tage | Application |
|        | DIP-24       | Input Voltage Range | 3.5 Watt     |   | 05: | 4.5    | ~      | 9      | VDC | S:    | Single     | 05:  | 5      | VDC  | Medical     |
|        |              |                     |              |   | 12: | 9      | ~      | 18     | VDC | D:    | Dual       | 058: | 5.8    | VDC  |             |
|        |              |                     |              |   | 24: | 18     | ~      | 36     | VDC |       |            | 12:  | 12     | VDC  |             |
|        |              |                     |              |   | 48: | 36     | ~      | 75     | VDC |       |            | 15:  | 15     | VDC  |             |
|        |              |                     |              |   |     |        |        |        |     |       |            |      |        |      |             |

# MTBF and Reliability

The MTBF of MIW03M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

| Model         | MTBF      | Unit  |
|---------------|-----------|-------|
| MIW03-05S05M  | 5,815,448 |       |
| MIW03-05S058M | 5,815,624 |       |
| MIW03-05S12M  | 6,550,077 |       |
| MIW03-05S15M  | 6,469,133 |       |
| MIW03-05D12M  | 6,243,079 |       |
| MIW03-05D15M  | 6,125,684 |       |
| MIW03-12S05M  | 6,276,235 |       |
| MIW03-12S12M  | 6,935,581 |       |
| MIW03-12S15M  | 6,842,047 |       |
| MIW03-12D12M  | 6,599,533 |       |
| MIW03-12D15M  | 6,490,243 | Hours |
| MIW03-24S05M  | 6,277,101 |       |
| MIW03-24S12M  | 6,841,141 |       |
| MIW03-24S15M  | 6,842,430 |       |
| MIW03-24D12M  | 6,629,863 |       |
| MIW03-24D15M  | 6,411,241 |       |
| MIW03-48S05M  | 6,323,086 |       |
| MIW03-48S12M  | 6,715,023 |       |
| MIW03-48S15M  | 6,756,621 |       |
| MIW03-48D12M  | 6,445,972 |       |
| MIW03-48D15M  | 6,336,217 |       |

www.minmaxpower.com