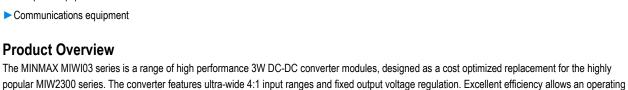


MIWI03 Series EC Note


DC-DC CONVERTER 3W, DIP-Package

Features

- ► Industrial Standard DIP-24 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC (opt. 3000VDC)
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► No Min. Load Requirement
- ► Under-voltage, Overload and Short Circuit Protection
- ► EMI Emission EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE-Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment

temperature up to +70°C at full load. The product comes in a DIP-24 plastic package with industry standard footprint. Typical applications for these

economical priced DC-DC converters are industrial electronics, instrumentation or communication equipment.

Table of contents

Model Selection Guide	. P2	Recommended Pad Layout for Single & Dual Output Converter	. P20
Input Specifications	. P2	Test Setup	. P21
Output Specifications	. P2	Technical Notes	. P21
General Specifications	. P3	Packaging Information	. P22
		Wave Soldering Considerations	
Environmental Specifications	. P3	Hand Welding Parameter	. P22
·		Part Number Structure	
Package Specifications	P20	MTBF and Reliability	. P23

Date:2023-01-12 Rev:3

Model Selection G	iuide								
Model	Input	Output	Output		out	Reflected	Max. capacitive	Efficiency	
Number	Voltage	Voltage	Current	Cur	rent	nt Ripple		(typ.)	
	(Range)		Max.	@Max. Load	@No Load	Current		@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%	
MIWI03-24S033		3.3	750	134			680 470	77	
MIWI03-24S05		5	600	158				79	
MIWI03-24S12		12	250	152				330	82
MIWI03-24S15	24	15	200	151	20	45	220	83	
MIWI03-24S24	(9 ~ 36)	24	125	154	30	15	100	81	
MIWI03-24D05		±5	±250	130			220#	80	
MIWI03-24D12		±12	±125	152			150#	82	
MIWI03-24D15		±15	±100	152			100#	82	
MIWI03-48S033		3.3	750	67			680	77	
MIWI03-48S05		5	600	78					470
MIWI03-48S12		12	250	75			330	83	
MIWI03-48S15	48	15	200	74	20	40	220	84	
MIWI03-48S24	(18 ~ 75)	24	125	76		20 10	100	82	
MIWI03-48D05] ` ′	±5	±250	65				220#	80
MIWI03-48D12		±12	±125	76			150#	82	
MIWI03-48D15		±15	±100	76			100#	82	

For each output

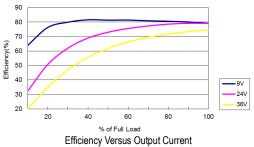
Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
land Come Valtage (4 and man)	24V Input Models	-0.7		50		
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100		
Start-up Threshold Voltage	24V Input Models			9	VDC	
	48V Input Models			18	VDC	
	24V Input Models			8.5		
Under Voltage Shutdown	48V Input Models			17.5		
Short Circuit Input Power				2000	mW	
Input Filter	All Models		Internal Pi Type			

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.3	±1.0	%
Load Regulation	Io=0% to 100%		±0.3	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20MHz Bandwidth			70	mV _{P-P}
Transient Recovery Time	05% Lead Otes Observe		200	500	μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	120	150		%
Short Circuit Protection	Continuous, Automatic Recovery				

Date:2023-01-12 Rev:3 MIWI03 Series – EC Notes 2

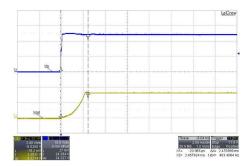
General Specifications						
Parameter	Conditions		Min.	Typ.	Max.	Unit
I/O Isolation Voltage	200	Standard	1500			VDC
	60 Seconds	Suffix H	3000			VDC
	1 Second	Standard	1800			VDC
I/O Isolation Resistance	500 VDC		1000			MΩ
I/O Isolation Capacitance	100kH	100kHz, 1V			300	pF
Switching Frequency						kHz
MTBF (calculated)	MIL-HDBK-217F@2		1,000,000		Hours	
	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

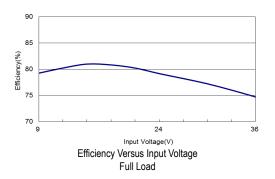
EMC Specifications							
Parameter		Standards & Level					
ENAL	Conduction		Milhaut automal agencement	Class A			
EMI	Radiation	EN 55032	Without external components	Class A			
	EN 55024	EN 55024					
	ESD	EN 61000-4-2 Air ± 8kV , Contact ± 6kV		А			
EMC	Radiated immunity	EN 61000-4-3 10V/m		А			
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		Α			
	Surge	EN 61000-4-5 ±1kV		А			
	Conducted immunity	EN	А				

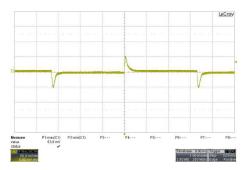

Environmental Specifications				
Parameter	Min.	Max.	Unit	
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C	
Case Temperature		+100	°C	
Storage Temperature Range	-50	+125	°C	
Humidity (non condensing)		95	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)		260	°C	

Notes

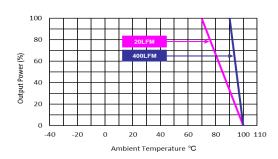
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.


Date:2023-01-12 Rev:3 MIWI03 Series – EC Notes 3

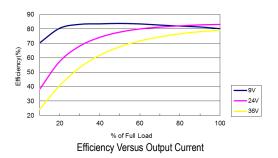


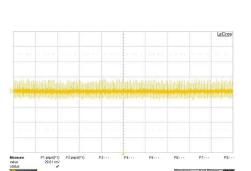


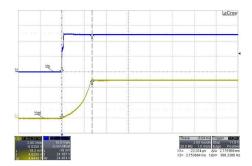
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

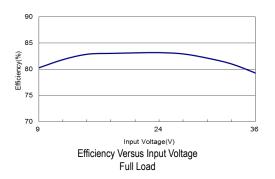


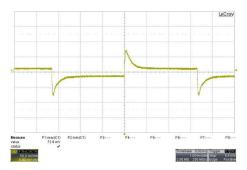
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \, ; \, \text{Full Load}$



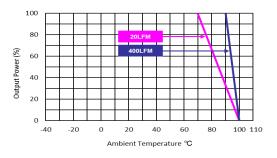

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

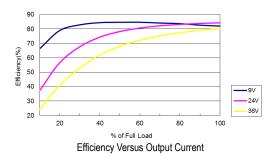


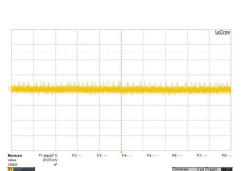


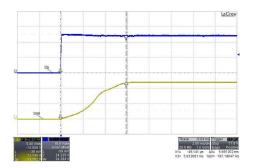
Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

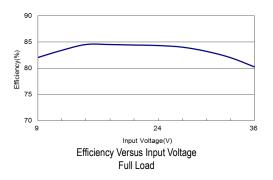


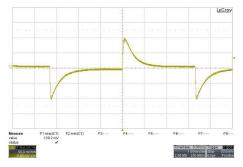
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load



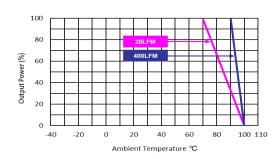

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

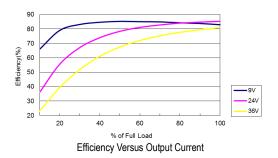


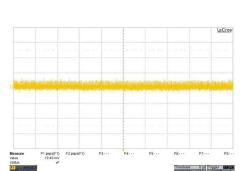


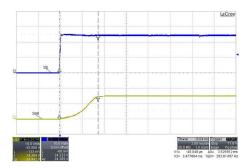
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

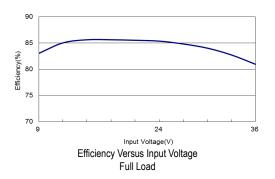


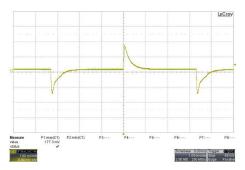
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$



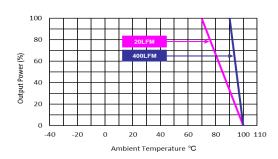

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

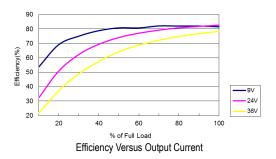


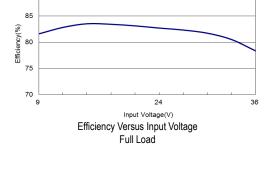


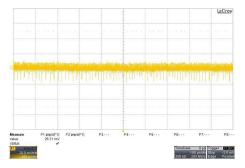
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

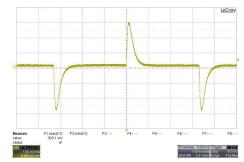


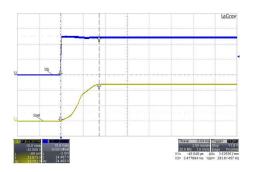
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \, ; \, \text{Full Load}$

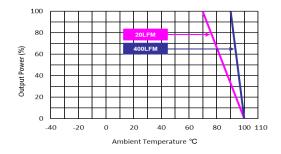



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



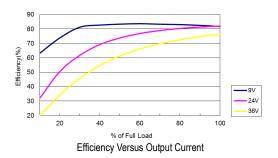

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

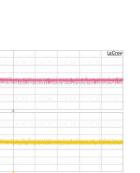




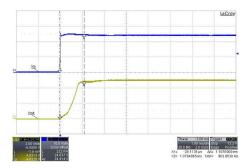
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

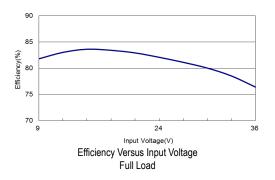
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

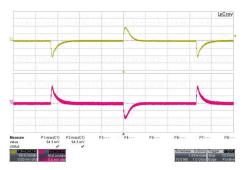




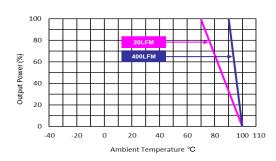
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

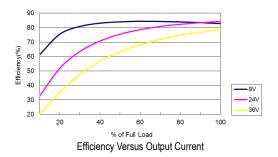


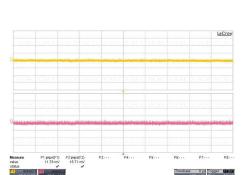


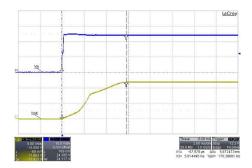
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

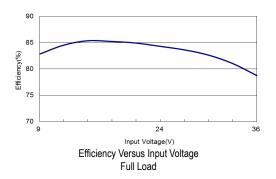


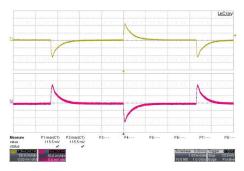
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$



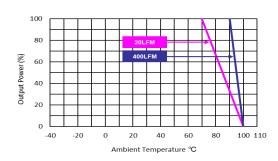

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

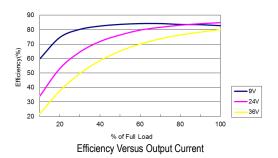


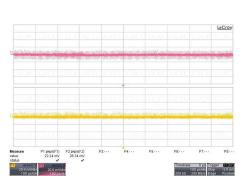


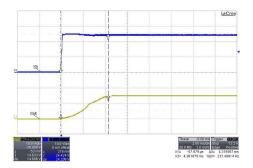
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

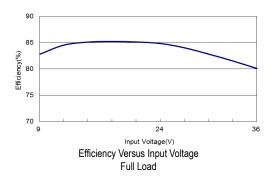


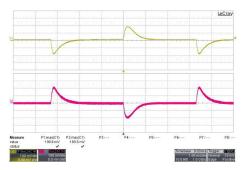
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$



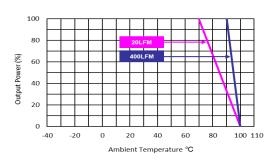

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

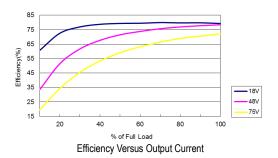


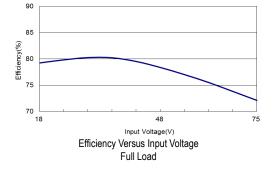


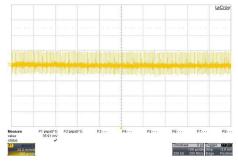
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

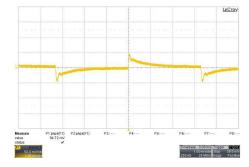


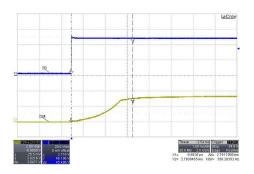
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

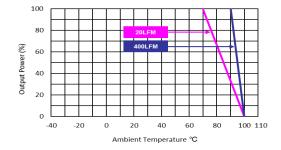



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



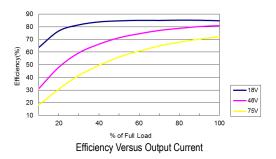

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

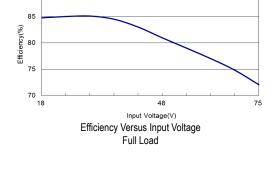




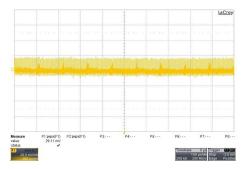
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

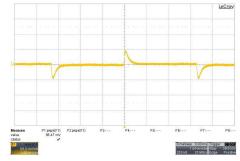
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

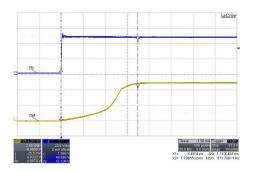


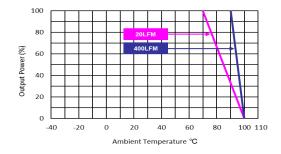

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



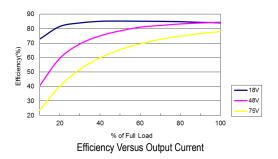

All test conditions are at 25°C The figures are identical for MIWI03-48S05

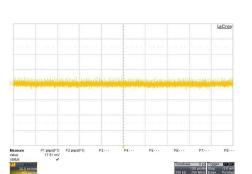

90



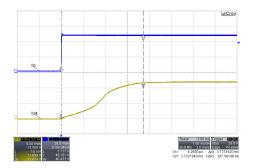
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

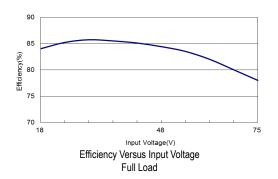
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

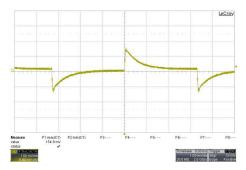




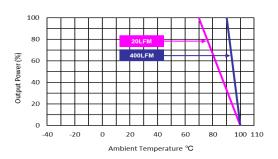
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

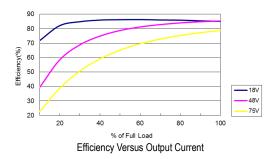


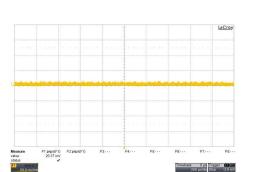


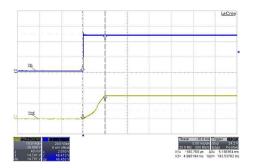
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

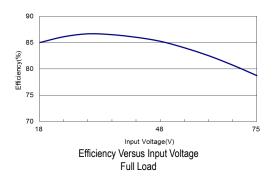


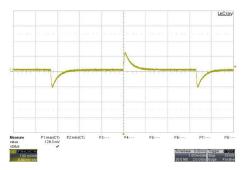
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



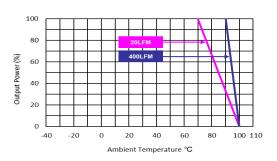

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

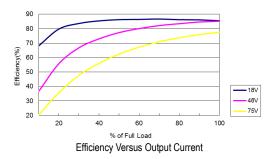


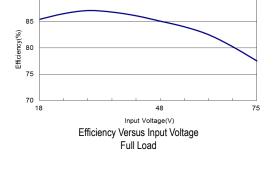


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

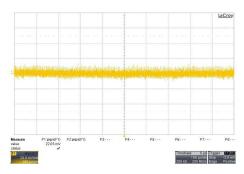


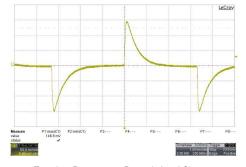
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \, ; \, \text{Full Load}$

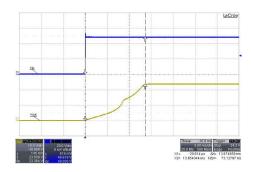

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

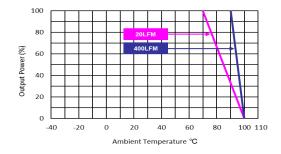


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$



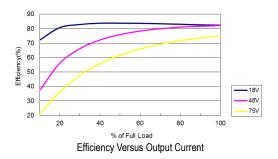

All test conditions are at 25°C The figures are identical for MIWI03-48S24

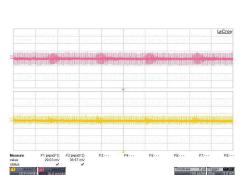

90



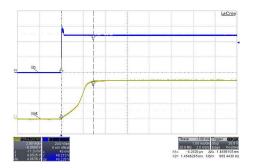
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

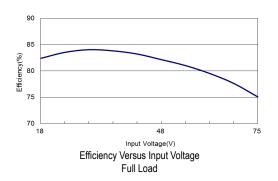
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

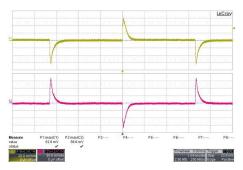




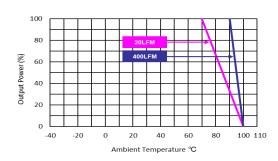
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

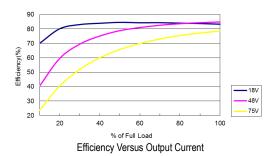


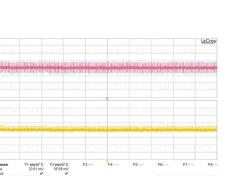


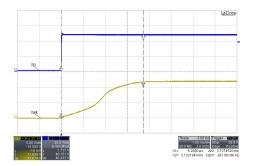
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

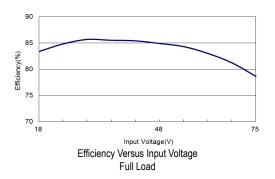


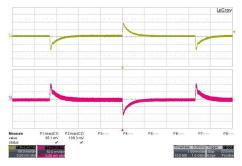
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



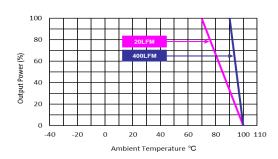

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

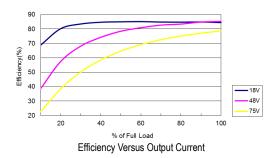


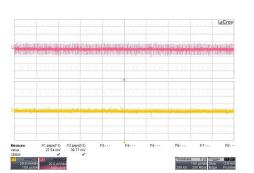


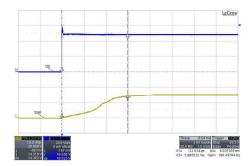
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

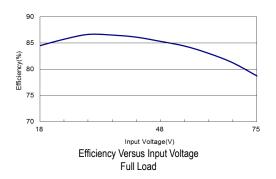


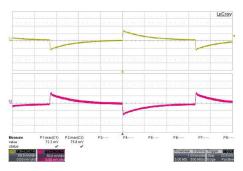
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



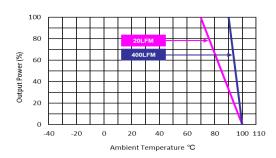

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

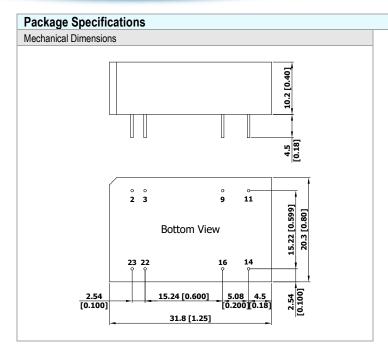




Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



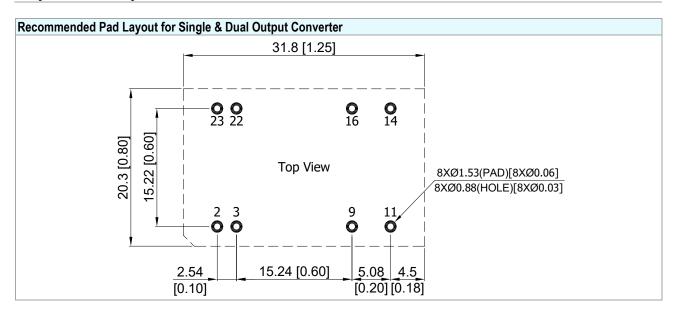
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

Pin Con	Pin Connections					
Pin	Single Output	Dual Output	Diameter mm (inches)			
2	-Vin	-Vin	Ø 0.5 [0.02]			
3	-Vin	-Vin	Ø 0.5 [0.02]			
9	No Pin	Common	Ø 0.5 [0.02]			
11	NC	-Vout	Ø 0.5 [0.02]			
14	+Vout	+Vout	Ø 0.5 [0.02]			
16	-Vout	Common	Ø 0.5 [0.02]			
22	+Vin	+Vin	Ø 0.5 [0.02]			
23	+Vin	+Vin	Ø 0.5 [0.02]			

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)


► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

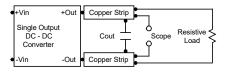
Case Size : 31.8x20.3x10.2mm (1.25x0.80x0.40 inches)

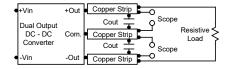
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Weight : 12.8g



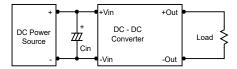
Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

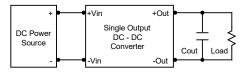
Peak-to-Peak Output Noise Measurement Test

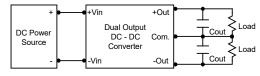
Use a Cout $0.47\mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

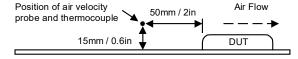
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance

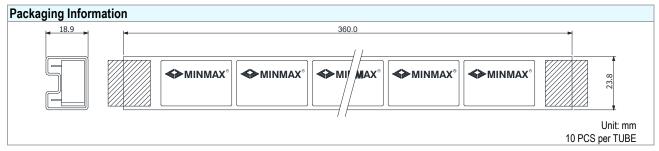

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $4.7\mu\text{F}$ for the 24V input devices and a $2.2\mu\text{F}$ for the 48V devices.

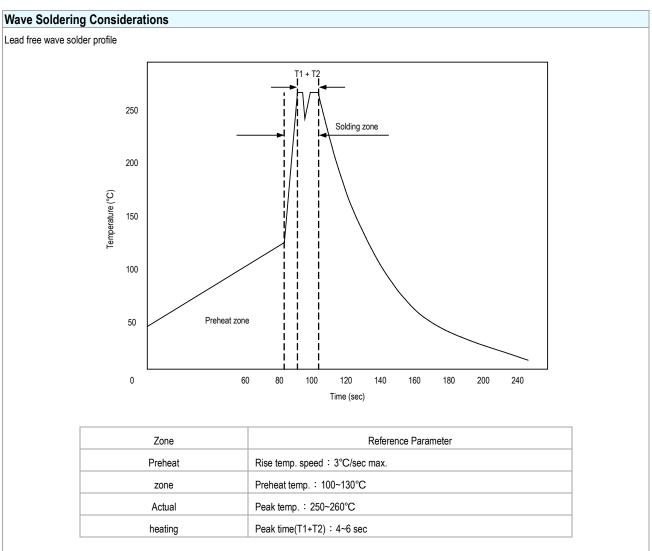
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.


Maximum Capacitive Load

The MIWI03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C.

The derating curves are determined from measurements obtained in a test setup.

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Date:2023-01-12 Rev:3

Part Number Structure WI 03 24 S 033 M Output Power Output Quantity Package Type Ultra-wide 4:1 Input Voltage Range Output Voltage DIP-24 Input Voltage Range 3 Watt VDC 24: 9 36 VDC S: Single 033: 3.3 VDC 48: 18 75 VDC D: Dual 05: 5 12: 12 VDC 15: 15 VDC 24: 24 VDC

MTBF and Reliability

The MTBF of MIWI03 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MIWI03-24S033	2,839,000	
MIWI03-24S05	2,550,000	
MIWI03-24S12	2,763,000	
MIWI03-24S15	3,026,000	
MIWI03-24S24	3,412,000	
MIWI03-24D05	3,198,000	
MIWI03-24D12	3,233,000	
MIWI03-24D15	3,143,000	Harris
MIWI03-48S033	2,663,000	Hours
MIWI03-48S05	3,127,000	
MIWI03-48S12	2,922,000	
MIWI03-48S15	3,089,000	
MIWI03-48S24	3,300,000	
MIWI03-48D05	2,724,000	
MIWI03-48D12	3,153,000	
MIWI03-48D15	2,876,000	

Date:2023-01-12 Rev:3