

MKWI50 Series EC Note

DC-DC CONVERTER 50W, Highest Power Density

Features

- Smallest Encapsulated 50W Converter
- Compact Size of 2" X 1" Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- Excellent Efficiency up to 92%
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MKWI50 series is the generation of high-performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 50W in an encapsulated, shielded metal package with dimensions of just 2.0"x1.0"x0.4". All models provide wide 4:1 input voltage range and precisely regulated output voltages.

A very high efficiency up to 92% which allows an operating temperature range of -40°C to +80°C is achieved by advanced circuit topology. Further features include remote On/Off, trimmable output voltage, under-voltage shutdown as well as overload and over-temperature protection. Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and many other space critical applications.

Table of contents

Model Selection Guide	P2	External Output Trimming	P15
Input Specifications	P2	Test Setup	P16
Remote On/Off Control	P2	Technical Notes	P16
Output Specifications	P2	Remote ON/OFF Implementation	P17
General Specifications	P3	Packaging Information	P17
EMC Specifications	P3	Wave Soldering Considerations	P18
Environmental Specifications	P3	Hand Welding Parameter	P18
Characteristic Curves	P4	Part Number Structure	P19
Package Specifications	P14	MTBF and Reliability	P19
Recommended Pad Layout	P14		

Date:2023-04-19 Rev:5

Model Selection Guide

Would Selection	Oulue								
Model	Input	Output	Output	Ing	out	Reflected	Over	Max.	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Ripple	Voltage	capacitive	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection	Load	@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	VDC	μF	%
MKWI50-24S033		3.3	10000	1528	80		3.9	26000	90
MKWI50-24S05	04	5	10000	2290	60		6.2	17000	91
MKWI50-24S12	24 (9~36)	12	4170	2267	80	40	15	3000	92
MKWI50-24S15	(9~30)	15	3330	2263	80		18	2000	92
MKWI50-24S24		24	2080	2286	80		30	750	91
MKWI50-48S033		3.3	10000	764	40		3.9	26000	90
MKWI50-48S05	40	5	10000	1145	30		6.2	17000	91
MKWI50-48S12	48	12	4170	1134	60	30	15	3000	92
MKWI50-48S15	(18~75)	15	3330	1134	60		18	2000	92
MKWI50-48S24		24	2080	1143	50		30	750	91

Input Specifications

		One filling (Medal	N/L.	T	Maria	11.21
P	arameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surgo Voltago (*	100ma may)	24V Input Models	-0.7		50	
Input Surge Voltage (100ms. max)	48V Input Models	-0.7		100	
		24V Input Models			9	
Start-Up Threshold Vo	oltage	48V Input Models			18	VDC
		24V Input Models		7.5		
Under Voltage Lockou	ut	48V Input Models		16		
Input Polarity Protection	on	Ν	lone			
Otant Lin Time	Power Up	Nervice) Vie and Constant Desisting Load			30	ms
Start Up Time	Remote On/Off	Nominal Vin and Constant Resistive Load			30	ms
Input Filter		All Models		Internal	LC Type	

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12V or	Open Circuit			
Converter Off	0V ~ 1.2V or \$	Short Circuit			
Control Input Current (on)	Vctrl = 5.0V		0.5		mA
Control Input Current (off)	Vctrl = 0V		-0.5		mA
Control Common	Referenced to N	Negative Input			
Standby Input Current	Nominal Vin		2.5		mA

Output Specifications

Output Specifications						
Parameter	Condition	ns / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Line Regulation	Vin=Min. to M	ax. @Full Load			±0.5	%
Load Regulation	Min. Load	to Full Load			±0.5	%
Minimum Load		No minimum Load Requirement				
D'acta () Nation		3.3V & 5V Models(3)			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	12V, 15V & 24V Models(3)			150	mV _{P-P}
Transient Recovery Time	05% Lood 0	ten Ohenne		250		µsec
Transient Response Deviation	25% L080 S	tep Change(2)		±3	±5	%
Temperature Coefficient					±0.02	%/°C
	% of nominal output	voltage (24Vo Models)			+20 / -10	%
Trim Up / Down Range (See Page 6)	% of nominal output	voltage (Other Models)			±10	%
Over Load Protection	Hid	cup		150		%
Short Circuit Protection	(Continuous, Automatic Recove	ery (Hiccup Mo	de 0.3Hz typ	.)	

Date:2023-04-19 Rev:5

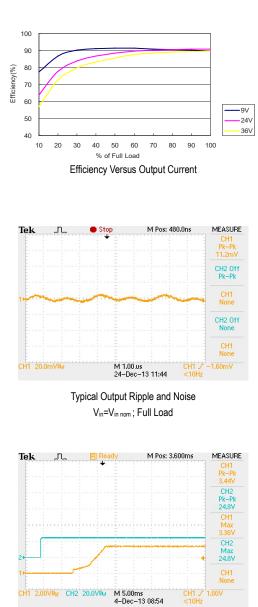
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
1/O lociation Voltage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Seconds	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			2200	pF
Switching Frequency			285		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign		230,900		Hours
	UL/cUL 60950-1 recognition(CSA c	ertificate), IEC/E	N 60950-1(CE	-report)	
Safety Approvals	UL/cUL 62368-1 recognition(UL ce	ertificate), IEC/EI	N 62368-1(CB-	report)	

EMC Specifications

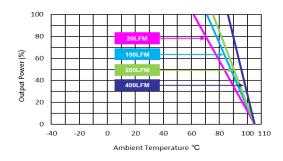
Parameter		Standards & Lev	el	Performance
EMI	Conduction	EN 55032	With external components	Class A
EMI ₍₆₎	Radiation	EN 33032	With external components	Class A
	EN 55024			
	ESD	EN 61000-4-2 ai	r ± 8kV , Contact ± 6kV	A
TMO	Radiated immunity	EN 610	00-4-3 10V/m	A
EMS ₍₆₎	Fast transient	EN 610	000-4-4 ±2kV	A
	Surge	EN 610	000-4-5 ±1kV	A
	Conducted immunity	EN 6100	00-4-6 10Vrms	A

Environmental Specifications

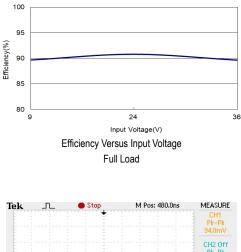
Deservator	Conditions (Model	Min	Ma	IX.	11-14
Parameter	Conditions / Model	Min.	without Heatsink	with Heatsink	Unit
	MKWI50-24S033, MKWI50-48S033		61	69	
Operating Ambient Temperature Range	MKWI50-24S12, MKWI50-24S15		53	62	
Nominal Vin, Load 100% Inom.	MKWI50-48S12, MKWI50-48S15	-40	55	02	°C
(for Power Derating see relative Derating Curves)	MKWI50-24S05, MKWI50-24S24		46	57	
	MKWI50-48S05, MKWI50-48S24		40	57	
	20LFM Convection without Heatsink	12.1		-	°C/W
	20LFM Convection with Heatsink	9.8		-	°C/W
	100LFM Convection without Heatsink	9.2		-	°C/W
The second data as	100LFM Convection with Heatsink	5.4		-	°C/W
Thermal Impedance	200LFM Convection without Heatsink	7.8		-	°C/W
	200LFM Convection with Heatsink	4.5		-	°C/W
	400LFM Convection without Heatsink	5.2		-	°C/W
	400LFM Convection with Heatsink	3.0		-	°C/W
Case Temperature			+1	05	°C
Thermal Protection	Shutdown Temperature		110°C	typ.	
Storage Temperature Range		-50	+1	25	°C
Humidity (non condensing)			9	5	% rel. H
RFI	Six-Sided Shie	elded, Metal	Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C


Notes

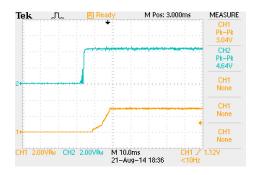
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a $1\mu\text{F}/50\text{V}$ MLCC and a $10\mu\text{F}/50\text{V}$ Tantalum Capatitor.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.



Characteristic Curves

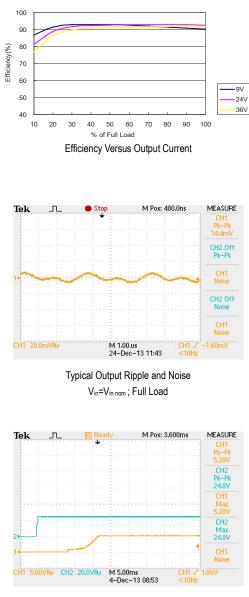

All test conditions are at 25°C The figures are identical for MKWI50-24S033

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

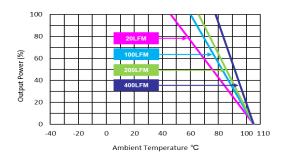


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

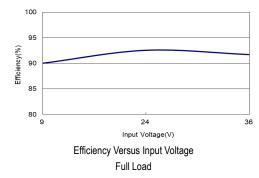
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

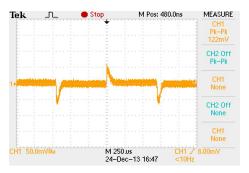


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

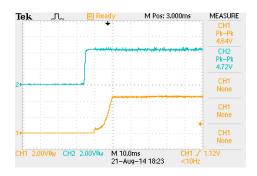


Characteristic Curves


All test conditions are at 25°C The figures are identical for MKWI50-24S05



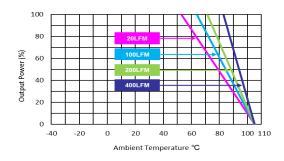
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$



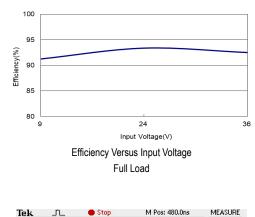
Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

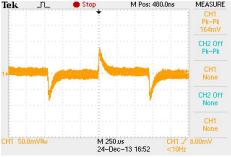
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

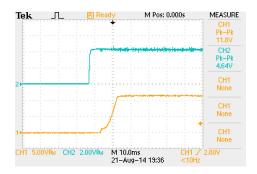


Characteristic Curves


All test conditions are at 25°C The figures are identical for MKWI50-24S12

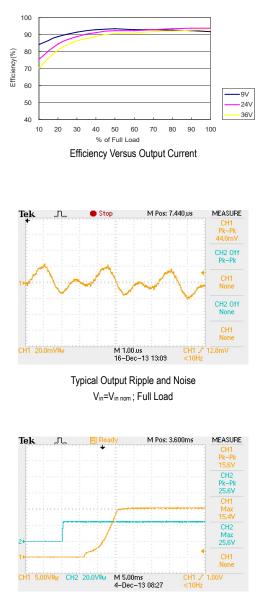


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \text{ ; Full Load}$



Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

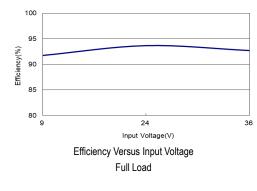
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom


ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$

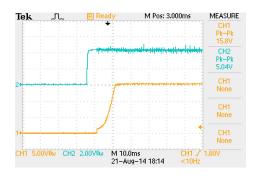
Date:2023-04-19 Rev:5



Characteristic Curves

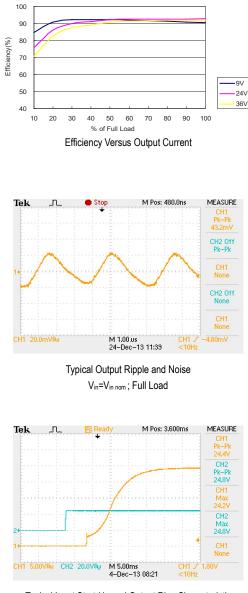

All test conditions are at 25°C The figures are identical for MKWI50-24S15

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

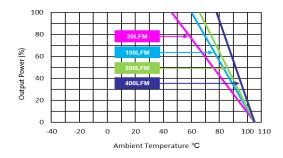


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

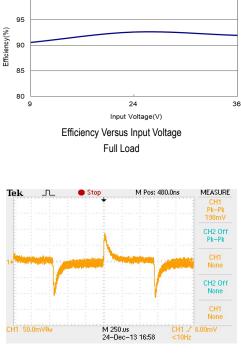

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2023-04-19 Rev:5

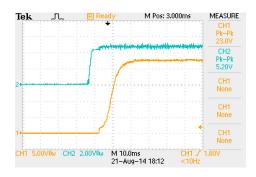


Characteristic Curves

All test conditions are at 25°C The figures are identical for MKWI50-24S24



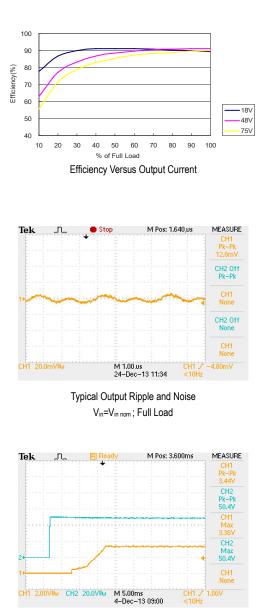
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in\,nom}}\ ;\ \text{Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

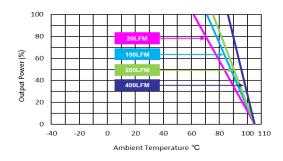
Date:2023-04-19 Rev:5

100

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

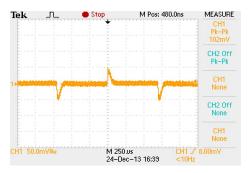


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

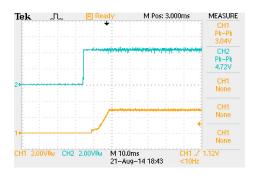


Characteristic Curves

All test conditions are at 25°C The figures are identical for MKWI50-48S033



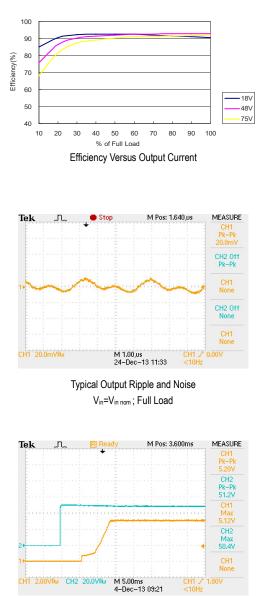
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$



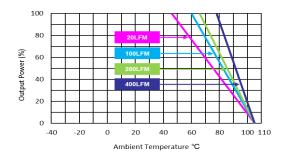
Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

100 95 90 85 80 18 48 75 Input Voltage(V) Efficiency Versus Input Voltage Full Load

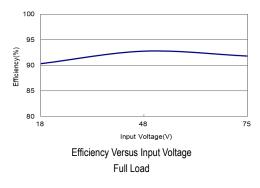
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

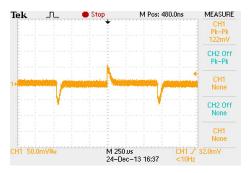


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

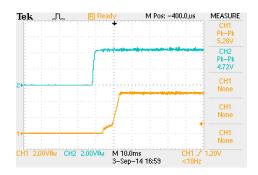

Characteristic Curves

All test conditions are at 25°C The figures are identical for MKWI50-48S05



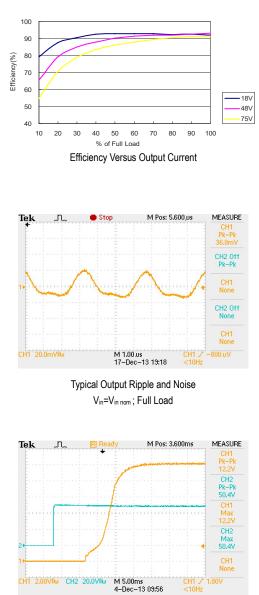

Typical Input Start-Up and Output Rise Characteristic

 $V_{in} = V_{in \ nom} \ ; \ Full \ Load$

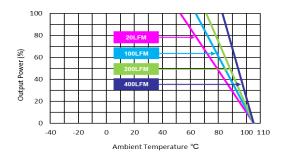


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

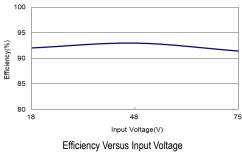
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}



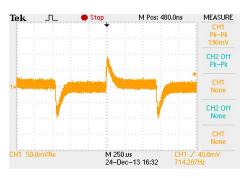
ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

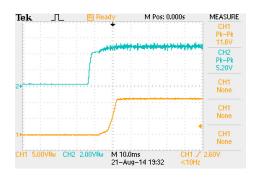

Characteristic Curves

All test conditions are at 25°C The figures are identical for MKWI50-48S12



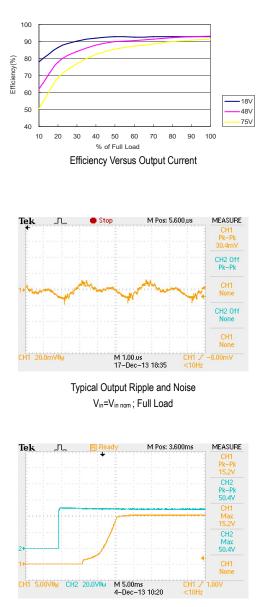
Typical Input Start-Up and Output Rise Characteristic


Vin=Vin nom ; Full Load

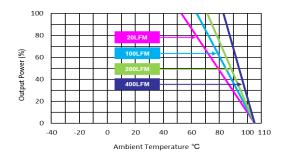

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

Full Load

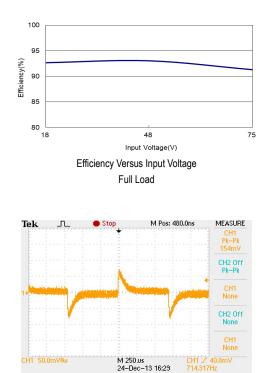
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

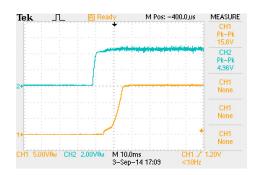


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load



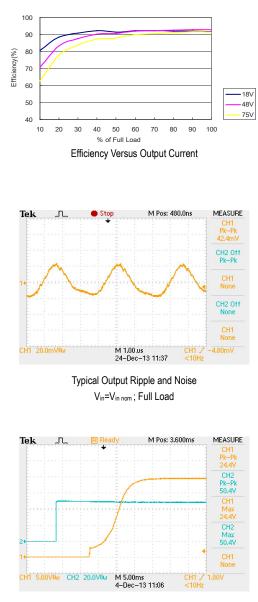
Characteristic Curves


All test conditions are at 25°C The figures are identical for MKWI50-48S15

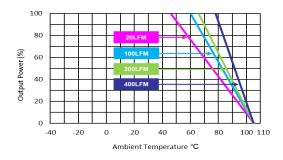

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

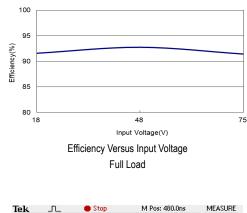
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

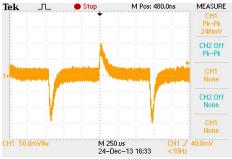


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

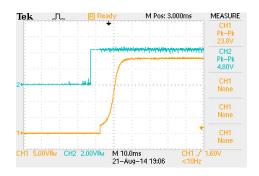


Characteristic Curves

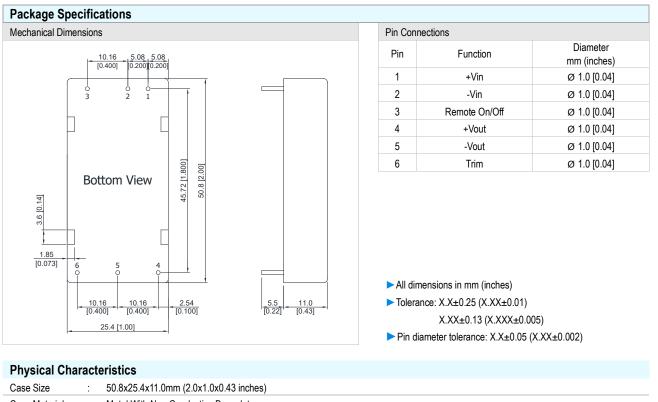

All test conditions are at 25°C The figures are identical for MKWI50-48S24



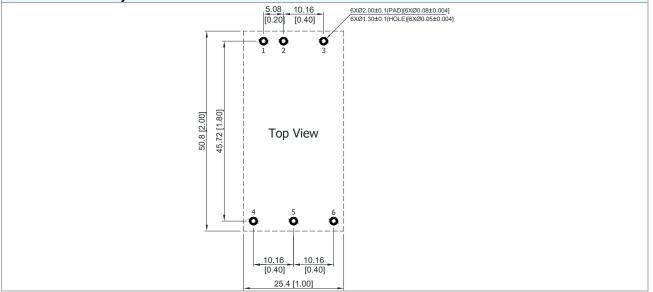
Typical Input Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in\,nom}\$; Full Load



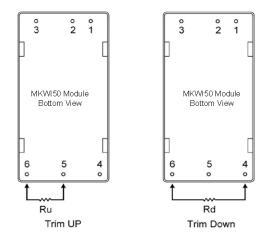
Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

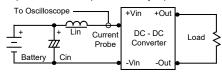

ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$

Case Material	:	Metal With Non-Conductive Baseplate
Base Material	:	FR4 PCB (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Potting Material	:	Epoxy (UL94-V0)
Weight	:	34g

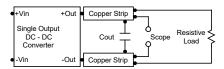

Recommended Pad Layout

External Output Trimming

Output can be externally trimmed by using the method shown below


	MKWI50-	-XXS033	MKWI50	-XXS05	MKWI50	-XXS12	MKWI50	-XXS15	MKWI50	-XXS24
Trim Range	Trim down	Trim up								
(%)	(kΩ)	(kΩ)								
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	333.39	
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	148.80	243.70
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	87.26	
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	56.50	108.50
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	38.04	
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	25.73	63.43
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	16.94	
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	10.35	40.90
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	5.22	
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	1.12	27.38
12										18.37
14										11.93
16										7.10
18										3.34
20										0.34

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

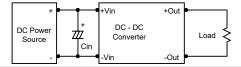
Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

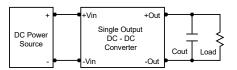
Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

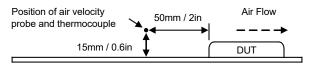
Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10µF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

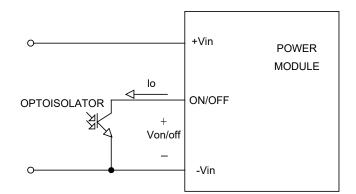


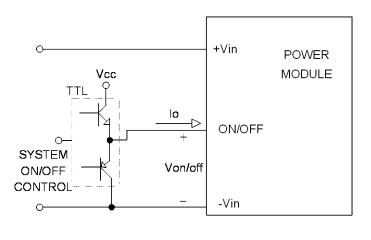
Maximum Capacitive Load

The MKWI50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

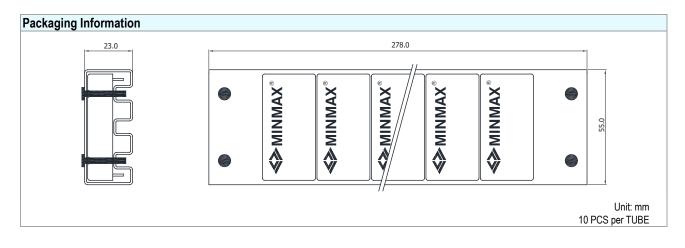
Thermal Considerations

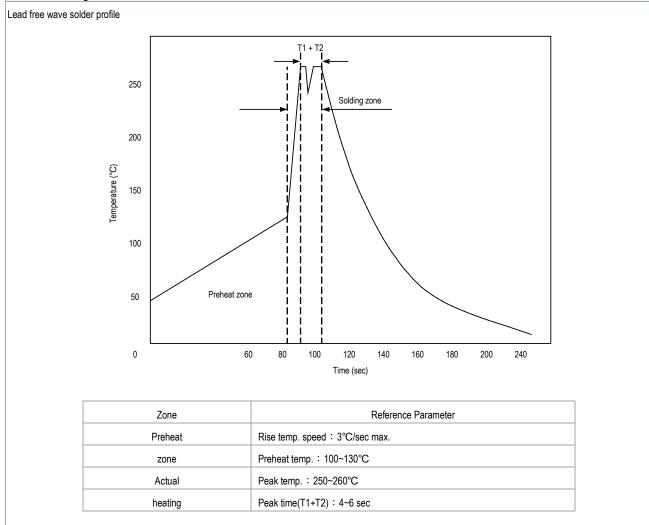
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.




Remote ON/OFF Implementation

With suffix-RC, the positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.


Remote ON/OFF implementation

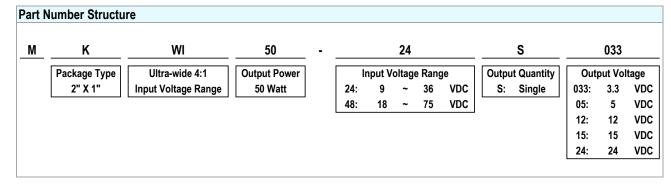

Level Control Using TTL Output

Date:2023-04-19 Rev:5

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag


Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2023-04-19 Rev:5

MTBF and Reliability

The MTBF of MKWI50 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit		
MKWI50-24S033	252,400			
MKWI50-24S05	230,900			
MKWI50-24S12	244,800			
MKWI50-24S15	241,700			
MKWI50-24S24	231,900			
MKWI50-48S033	256,600	Hours		
MKWI50-48S05	240,500			
MKWI50-48S12	245,700			
MKWI50-48S15	242,300			
MKWI50-48S24	233,000			