

MKZI20 Series EC Note

DC-DC CONVERTER 20W, Reinforced Insulation, Railway Certified

Features

- ► Industrial Standard 2"x1" Package
- ► Ultra-wide Input Range 9-36VDC, 18-75VDC, 40-160VDC
- ► I/O Isolation 3000VAC with Reinforced Insulation
- ▶ Operating Ambient Temp. Range -40°C to +88.5°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► Remote On/Off, Output Voltage Trim
- ► Conducted EMI EN 55032/11 Class A Approved
- ▶ Vibration and Shock/Bump Test EN 61373 Approved
- ➤ Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- ► Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ➤ Communications equipment

Product Overview

The MINMAX MKZI20 series is a range of high performance 20W isolated DC-DC converter within encapsulated 2"x1" package which specifically design for railway applications. There are 18 models available for the railway system of multi-input voltage range by 24(9~36)VDC \ 48(18~75)VDC \ 72/110(40~160)VDC and fixed output voltage regulation. Further features include under-voltage, overload, over voltage, short circuit protection, remote ON/OFF, output voltage trim and conducted EMI EN 55032/11 Class A as well.

MKZI20 series conform to vibration and thermal shock/bump test EN 61373, cooling, dry and damp heat test IEC/EN 60068-2-1,2,30 and railway EMC standard EN 50121-3-2 and complies also with Railway Certification EN 50155 (IEC 60571). MKZI20 series offer an highly reliable solution for critical applications in railway systems, battery-powered equipment, measure instrumentation and many critical applications.

Table of contents

Model Selection Guide	P2 F	External Output Trimming	P26
Input Specifications			
Remote On/Off Control		•	
Output Specifications			
General Specifications	P3 F	Packaging Information	P28
EMC Specifications	P3 \	Nave Soldering Considerations	P29
Environmental Specifications	P4 l	Hand Welding Parameter	P29
Characteristic Curves	P5 F	Part Number Structure	P30
Package Specifications	P23	MTBF and Reliability	P30
Recommended Pad Layout for Single & Dual Output Converter.	P25		

Model Selection	Guide									
Model	Input	Output	Output	Inj	put	Over	Max. capacitive	Efficiency		
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)		
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load		
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%		
MKZI20-24S05		5	4000	958		6.2	6800	87		
MKZI20-24S12		12	1670	960		15	1200	87		
MKZI20-24S15	24	15	1330	955	25	18	750	87		
MKZI20-24S24	(9~36)	24	833	957		20	25	30	300	87
MKZI20-24D12		±12	±833	969						
MKZI20-24D15		±15	±667	969		±18	380#	86		
MKZI20-48S05		5	4000	479		6.2	6800	87		
MKZI20-48S12		12	1670	474		15	1200	88		
MKZI20-48S15	48	15	1330	472	45	18	750	88		
MKZI20-48S24	(18~75)	24	833	473	15	30	300	88		
MKZI20-48D12		±12	±833	479		±15	600#	87		
MKZI20-48D15		±15	±667	479		±18	380#	87		
MKZI20-110S05		5	4000	216		6.2	6800	84		
MKZI20-110S12	1	12	1670	212	1	15	1200	86		
MKZI20-110S15	110	15	1330	211	1	18	750	86		
MKZI20-110S24	(40~160)	24	833	211	10	30	300	86		
MKZI20-110D12	1 '	±12	±833	211	1	±15	600#	86		
MKZI20-110D15	1	±15	±667	212	1	±18	380#	86		

For each output

Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
	24V Input Models	-0.7		50		
Input Surge Voltage (100ms. max)	48V Input Models	-0.7		100		
	110V Input Models	-0.7		170		
	24V Input Models			9		
Start-Up Threshold Voltage	48V Input Models			18	VDC	
	110V Input Models			40		
	24V Input Models		7.5			
Under Voltage Shutdown	48V Input Models		16			
	110V Input Models		37			
Start Up Time	All Mandala		30	50	mS	
Input Filter	All Models		Internal Pi Type			

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12V or Open Circuit				
Converter Off	0V ~ 1.2V or Short Circuit				
Control Input Current (on)	Vctrl = 5.0V		0.5		mA
Control Input Current (off)	Vctrl = 0V		-0.5		mA
Control Common	Referenced to Negative Input				
Standby Input Current	Nominal Vin		2.5		mA

Date:2023-03-10 Rev:12 MKZI20 Series – EC Notes 2

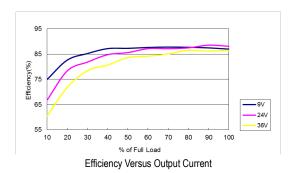
Output Specifications							
Parameter		Conditions / Model			Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance		Dual Output, Balanced Loa	ds			±2.0	%
Line Regulation		Vin=Min. to Max. @ Full Lo	ad			±0.2	%
Land Develope		- 00/ 1- 4000/	Single Output			±0.5	%
Load Regulation	Į(o=0% to 100%	Dual Output			±1.0	%
Minimum Load		No minimum Load Requirement					
		5Vo	Measured with a		50		mV _{P-P}
Diagle 9 Naise	0-20 MHz Bandwidth 12Vo,15Vo, ±12Vo, ±15Vo 24Vo	12Vo,15Vo, ±12Vo, ±15Vo	10μF/25V MLCC		100		mV _{P-P}
Ripple & Noise		Measured with a 4.7µF/50V MLCC		150		mV _{P-P}	
Transient Recovery Time		050/ 1 1 01 01				300	μsec
Transient Response Deviation		25% Load Step Change (2)			±3	±5	%
Temperature Coefficient						±0.02	%/°C
Trim Up / Down Range (See Page 8)	% of Nominal Output Voltage				±10	%	
Over Load Protection		Hiccup			150		%
Short Circuit Protection		Continuous, Automa	tic Recovery (Hiccup N	Node 0.3Hz ty	p. / 0.5Hz ma	x.)	

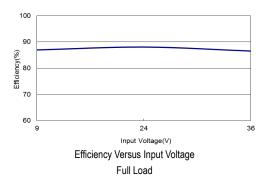
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	3000			VAC
Isolation Voltage Input/Output to case	Rated For 60 Seconds	1500			VAC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		1500		pF
Switching Frequency		260	280	310	kHz
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign	665,100			Hours
Cofety Assessed	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report), EN 50155, IEC 60571				
Safety Approval	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)				

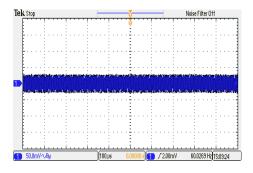
EMC Specifications				
Parameter		Standards & Le	evel	Performance
General		Compliance with EN 5012	21-3-2 Railway Applications	
EMI ₍₅₎	Conduction	EN 55032/11	Without external components	Class A
	Radiation		With external components	Class A
	EN 55024			
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV		Α
	Radiated immunity	EN 61000-4-3 10V/m		Α
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		Α
	Surge	EN 61000-4-5 ±2kV		Α
	Conducted immunity	EN 61000-4-6 10Vrms		Α
	PFMF	EN 61000-4-8 10	0A/m, 1000A/m For 1 Second	Α

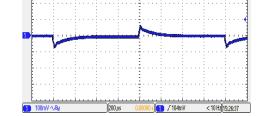
Date:2023-03-10 Rev:12 MKZI20 Series – EC Notes 3

Environmental Specifications						
Parameter	Conditions / Model	Min.	Typ.	Ma	Unit	
Falanietei	Conditions / Model		Typ.	without Heatsink	with Heatsink	Offic
	MKZI20-48S12, MKZI20-48S15, MKZI20-48S24			72	78	
	MKZI20-24S05, MKZI20-24S12, MKZI20-24S15					
Operating Temperature Range	MKZI20-24S24, MKZI20-48S05, MKZI20-48D12			69	76	
Nominal Vin, Load 100% Inom.	MKZI20-48D15	-40				°C
(for Power Derating see relative Derating Curves)	MKZI20-24D12, MKZI20-24D15, MKZI20-110S12	-40				C
(tol 1 owel Defaulty see relative Defaulty Curves)	MKZI20-110S15, MKZI20-110S24, MKZI20-110D12			66	73	
	MKZI20-110D15					
	MKZI20-110S05			59	68	
	20LFM Convection without Heatsink	12.1			-	°C/W
-	20LFM Convection with Heatsink	9.8				°C/W
	100LFM Convection without Heatsink	9.2				°C/W
	100LFM Convection with Heatsink	5.4			-	°C/W
Thermal Impedance	200LFM Convection without Heatsink	7.8				°C/W
	200LFM Convection with Heatsink	4.5				°C/W
	400LFM Convection without Heatsink	5.2				°C/W
	400LFM Convection with Heatsink	3.0				°C/W
Case Temperature				+1	05	°C
Over Temperature Protection (Case)			+115		-	°C
Storage Temperature Range		-50		+1	25	°C
Cooling Test	Compliance	e to IEC/	EN60068	-2-1		
Dry Heat	Compliance	e to IEC/	EN60068	-2-2		
Damp Heat	Compliance	e to IEC/E	N60068-	2-30		
Shock & Vibration Test	Compliar	nce to IEC	C/EN 613	73		
Operating Humidity (non condensing)				9:	5	% rel. H
RFI	Six-Sided	Shielded	, Metal C	ase		
Lead Temperature (1.5mm from case for 10Sec.)				26	60	°C

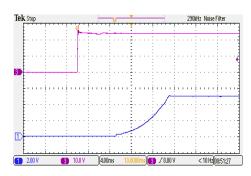

Notes

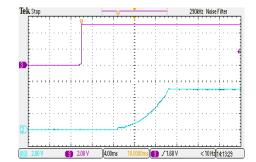

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.


Date:2023-03-10 Rev:12 MKZI20 Series – EC Notes 4

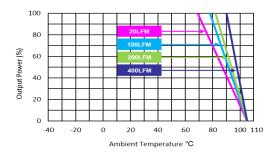


All test conditions are at 25°C The figures are identical for MKZI20-24S05





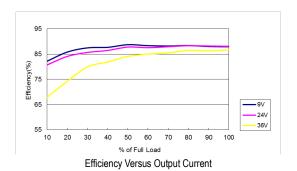
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

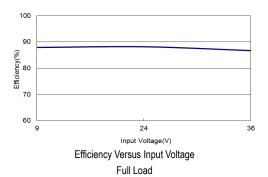

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

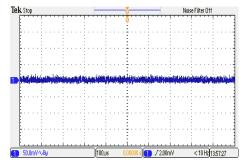


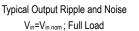
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

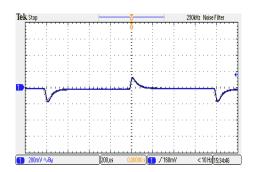
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

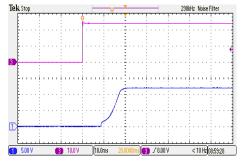


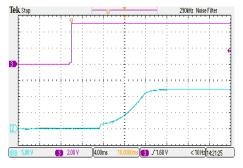

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

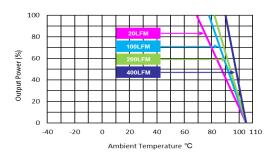

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom (with heatsink)}}$

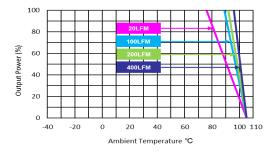



All test conditions are at 25°C $\,$ The figures are identical for MKZI20-24S12 $\,$

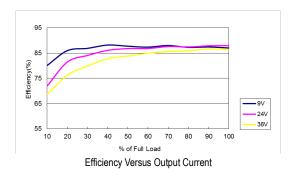


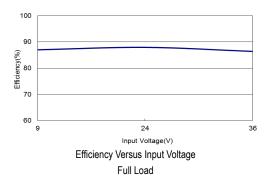


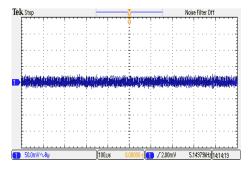

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

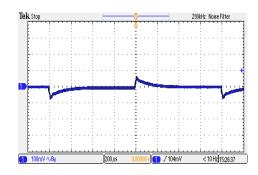

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

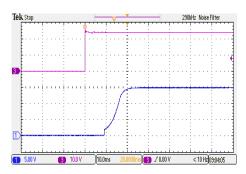
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

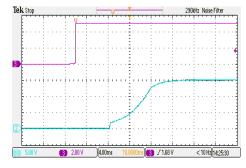

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

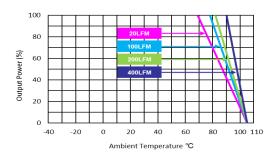


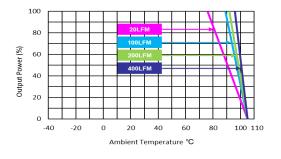

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-24S15

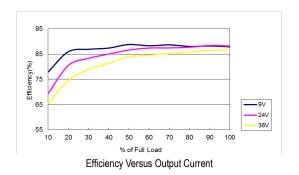


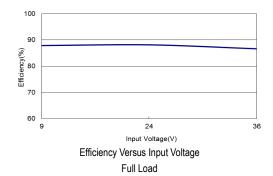

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

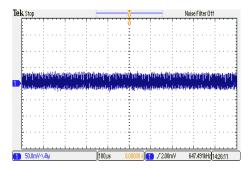

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

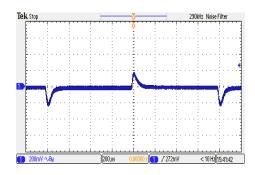

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

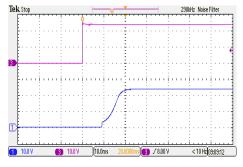
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

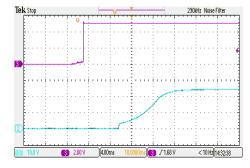

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (without heatsink)

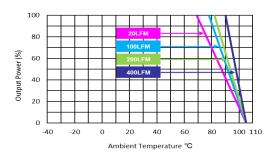


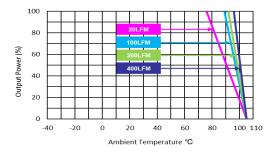

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)


All test conditions are at 25°C The figures are identical for MKZI20-24S24

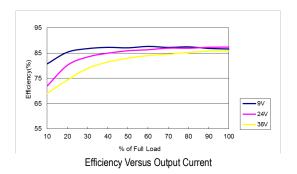


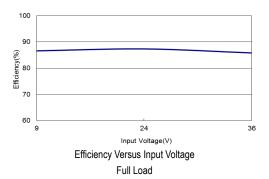

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

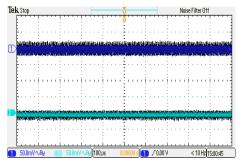

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

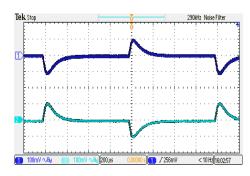

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

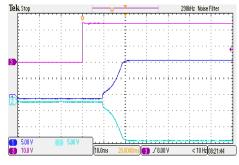
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

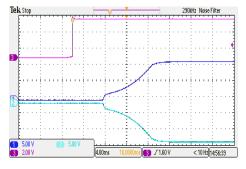

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (without heatsink)

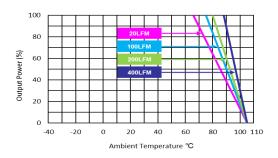


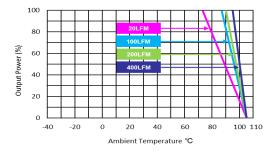

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)


All test conditions are at 25°C The figures are identical for MKZI20-24D12

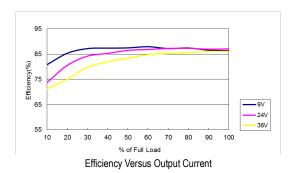


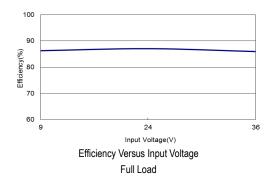

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

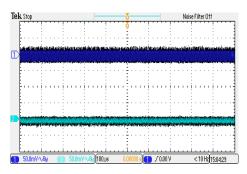

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

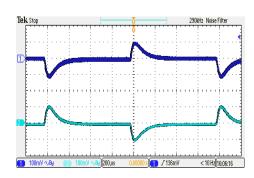

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

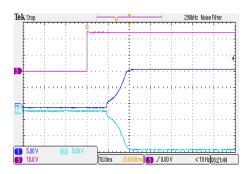
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

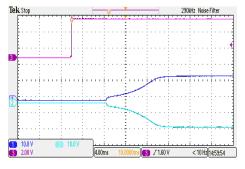

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (without heatsink)

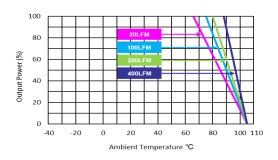


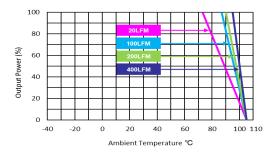

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)


All test conditions are at 25°C The figures are identical for MKZI20-24D15

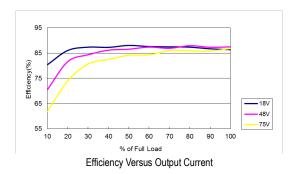


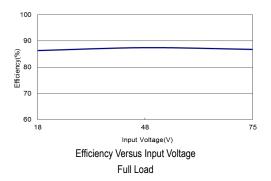

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

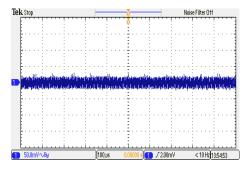

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

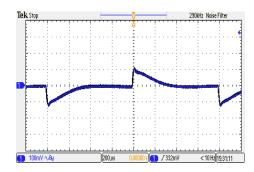

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

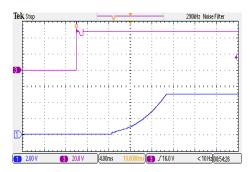
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

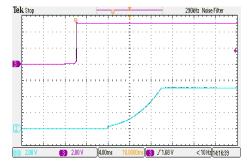

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

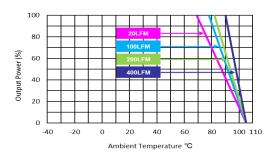


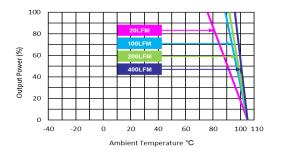

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-48S05

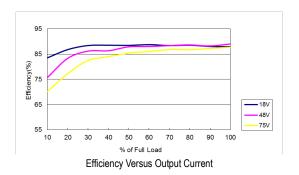


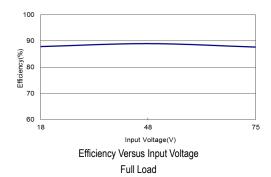

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

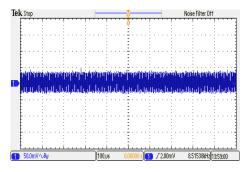

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

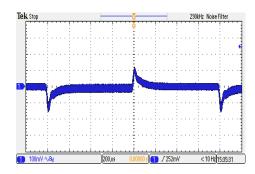

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

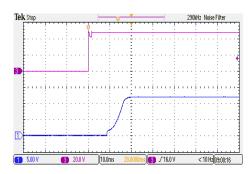
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

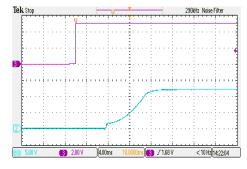

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

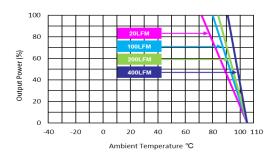


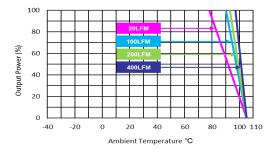

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C $\,$ The figures are identical for MKZI20-48S12 $\,$

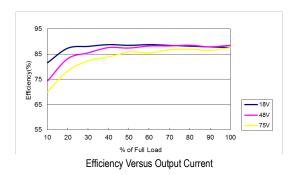


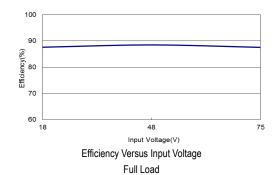

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

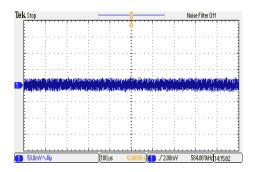

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

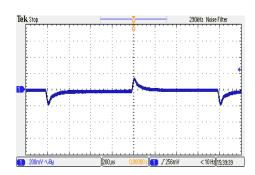

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

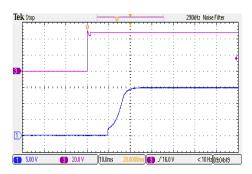
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

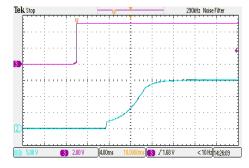

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

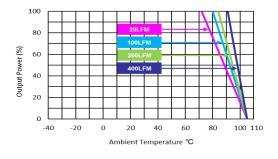


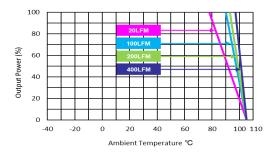

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-48S15

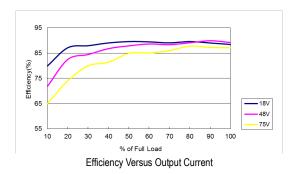


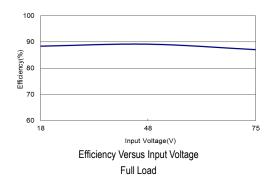


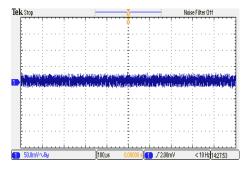

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

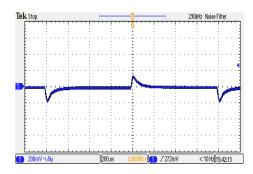

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

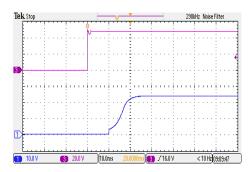
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

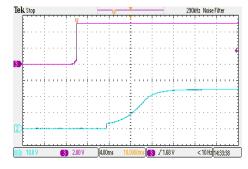

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$



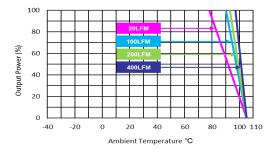

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-48S24

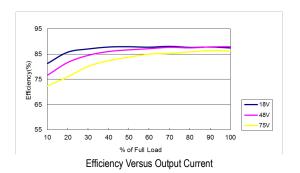


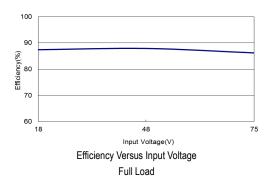

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

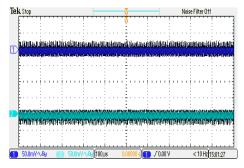

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

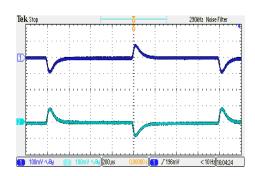

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

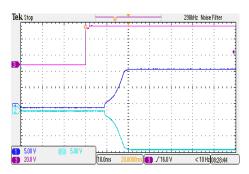
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

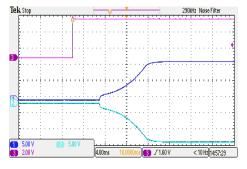

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

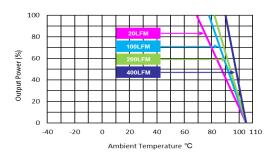


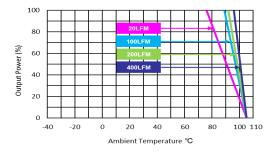

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-48D12

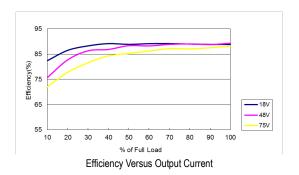


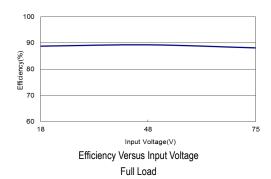

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

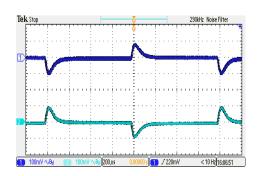

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

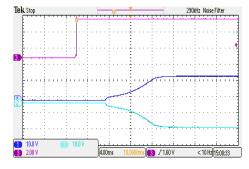
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

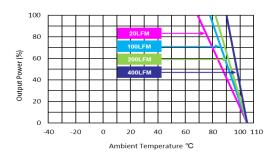

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

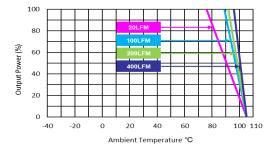


Derating Output Power Versus Ambient Temperature and Airflow V_{in} = V_{in} nom (with heatsink)


All test conditions are at 25°C $\,$ The figures are identical for MKZI20-48D15 $\,$

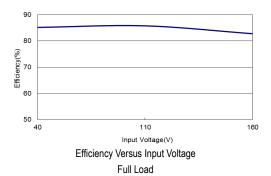

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

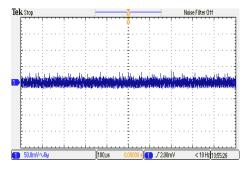

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

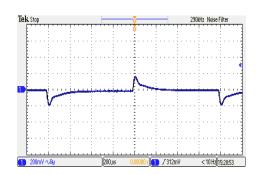

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

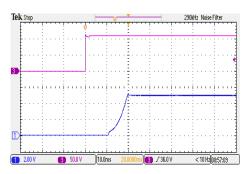
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

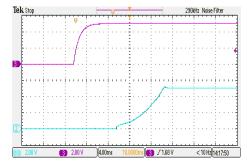
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

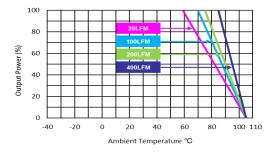


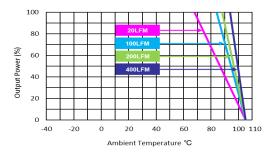

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-110S05

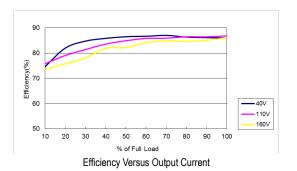


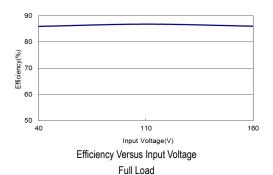

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

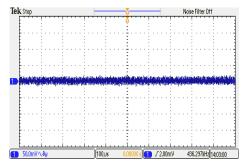

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

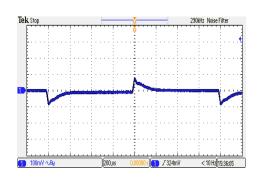

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

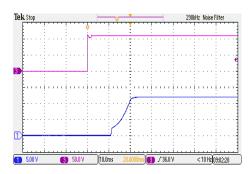
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

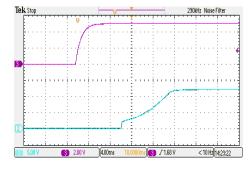

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$



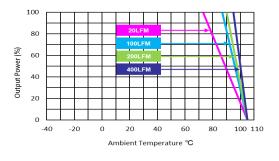

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-110S12

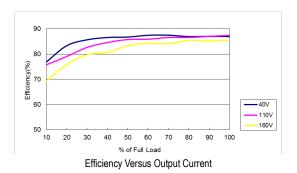


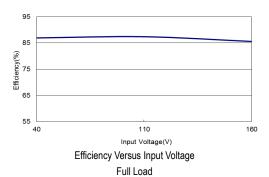

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

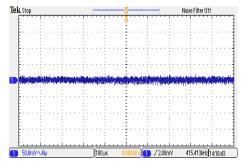
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

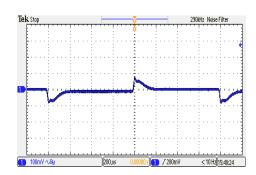

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

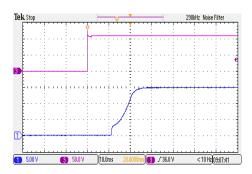
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

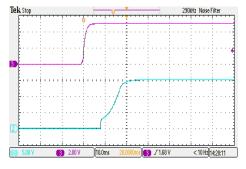

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

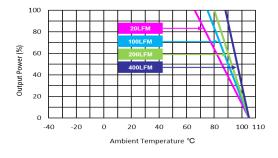


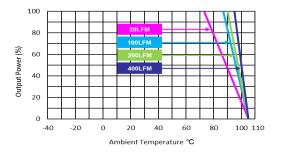

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-110S15

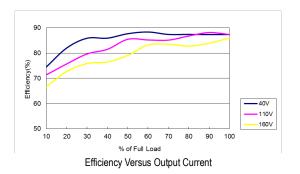


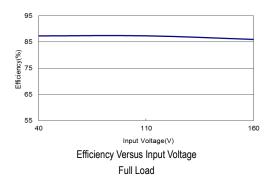

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

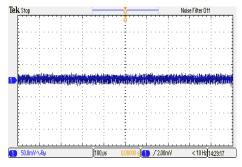

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

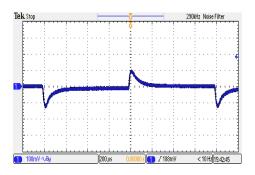

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

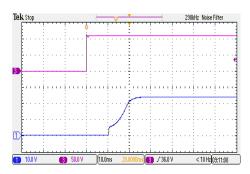
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

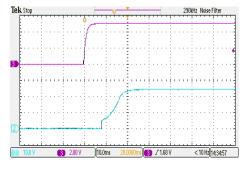

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

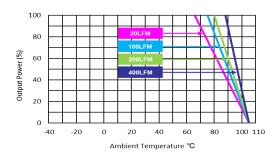


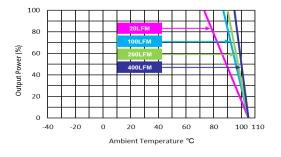

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C The figures are identical for MKZI20-110S24

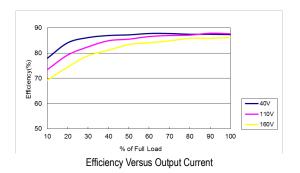


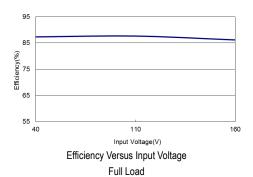

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

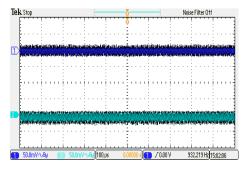

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

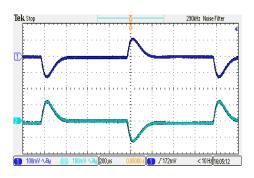

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

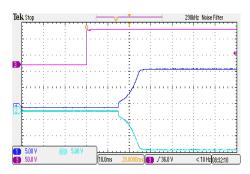
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

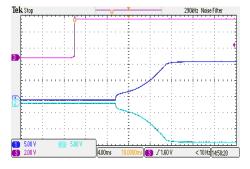

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

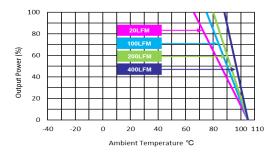


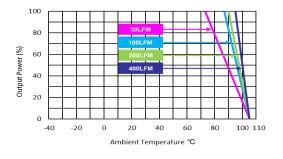

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$


All test conditions are at 25°C $\,$ The figures are identical for MKZI20-110D12 $\,$

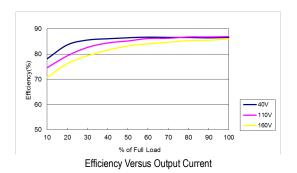


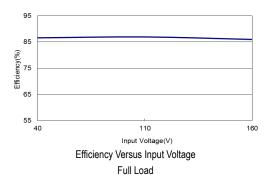

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

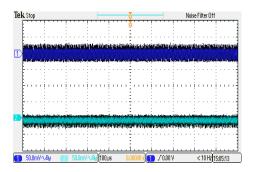

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

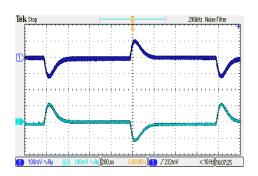

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in \ nom}$; Full Load

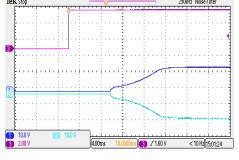

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (without heatsink)

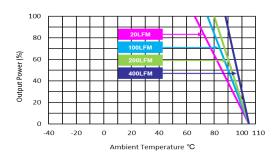


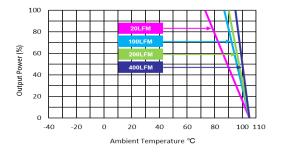

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)


All test conditions are at 25°C $\,$ The figures are identical for MKZI20-110D15 $\,$

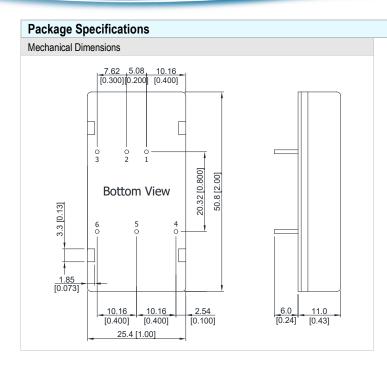



Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

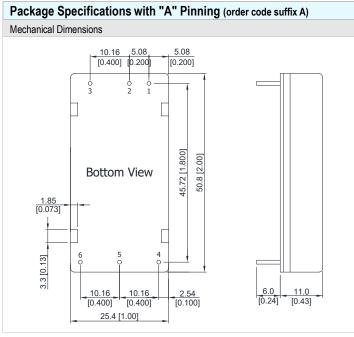

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom (with heatsink)}}$



Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)	
1	+Vin	+Vin	Ø 1.0 [0.04]	
2	-Vin	-Vin	Ø 1.0 [0.04]	
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]	
4	+Vout	+Vout	Ø 1.0 [0.04]	
5	Trim	Common	Ø 1.0 [0.04]	
6	-Vout	-Vout	Ø 1.0 [0.04]	

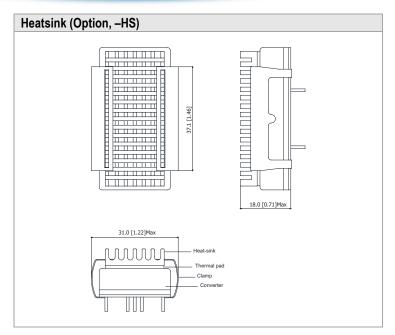
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.75 (X.XX±0.03)

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)	
1	+Vin	+Vin	Ø 1.0 [0.04]	
2	-Vin	-Vin	Ø 1.0 [0.04]	
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]	
4	+Vout	+Vout	Ø 1.0 [0.04]	
5	-Vout	Common	Ø 1.0 [0.04]	
6	Trim	-Vout	Ø 1.0 [0.04]	

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.75 (X.XX±0.03)


X.XX±0.25 (X.XXX±0.01)

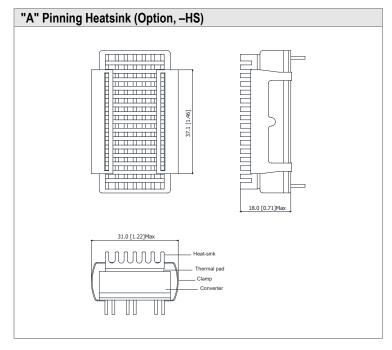
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

PΙ	nysical	Characteristics
_		

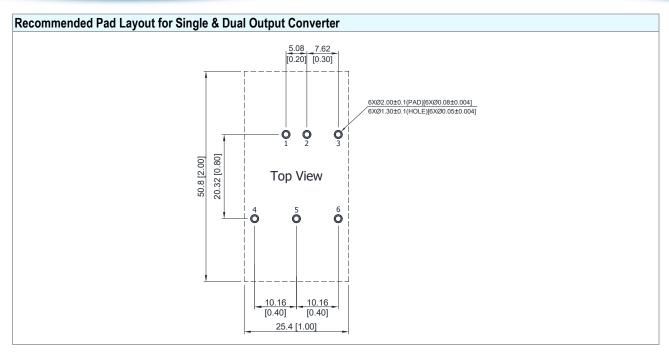
Case Size	:	0.8x25.4x11.0 mm (2.0x1.0x0.43 inches)	
Case Material	:	tal With Non-Conductive Baseplate	
Base Material	:	4 PCB (flammability to UL 94V-0 rated)	
Insulated Frame Material	:	on-Conductive Black Plastic (flammability to UL 94V-0 rated)	
Pin Material	:	Copper Alloy	
Potting Material	:	Silicone (UL94-V0)	
Weight	:	40.5g	

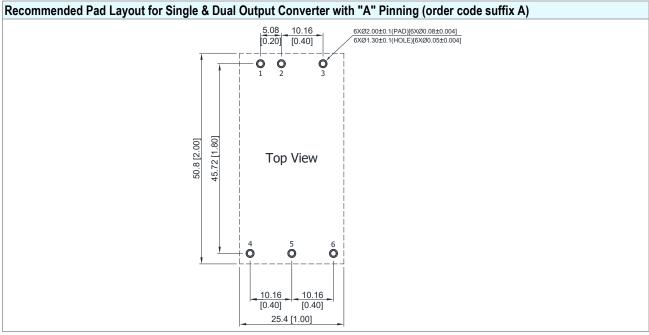
Physical Characteristics

Heatsink Material : Aluminum

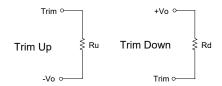

Finish : Black Anodized Coating

Weight : 9g


The advantages of adding a heatsink are:


1. To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.

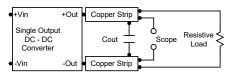
2. To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

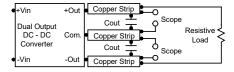


External Output Trimming

Output can be externally trimmed by using the method shown below

Trim Range	MKZI20-XXS05		MKZI20-XXS12		MKZI20-XXS15		MKZI20-XXS24	
	Trim down	Trim up						
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)
1	156.81	119.77	419.81	344.74	602.92	482.88	598.97	486.83
2	70.69	53.70	187.68	154.37	269.91	215.89	267.93	217.87
3	41.99	31.67	110.30	90.92	158.91	126.89	157.59	128.21
4	27.64	20.66	71.61	59.19	103.41	82.40	102.42	83.38
5	19.03	14.05	48.40	40.15	70.10	55.70	69.31	56.49
6	13.29	9.65	32.93	27.46	47.90	37.90	47.25	38.56
7	9.18	6.50	21.87	18.39	32.05	25.18	31.48	25.75
8	6.11	4.14	13.58	11.59	20.15	15.65	19.66	16.14
9	3.72	2.31	7.13	6.31	10.90	8.23	10.46	8.67
10	1.80	0.84	1.98	2.07	3.50	2.30	3.11	2.69





Test Setup

Peak-to-Peak Output Noise Measurement Test

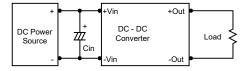
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

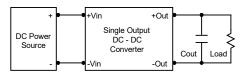
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

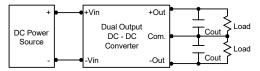
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

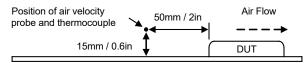
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $4.7\mu\text{F}$ for the 24V input devices, a $2.2\mu\text{F}$ for the 48V devices and a $1\mu\text{F}$ for the 110V devices.

Output Ripple Reduction

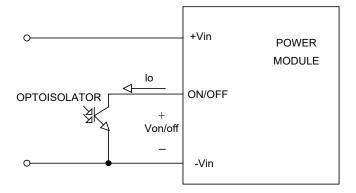
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

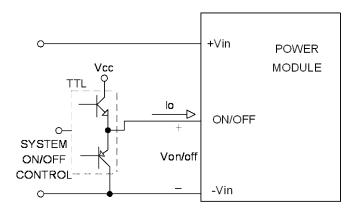


Maximum Capacitive Load

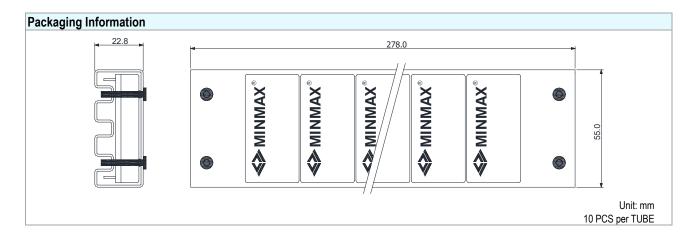
The MKZI20 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

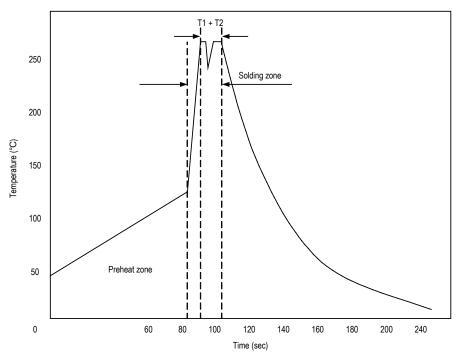

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Remote On/Off Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF



Level Control Using TTL Output

Wave Soldering Considerations Lead free wave solder profile

Zone	Reference Parameter		
Preheat	Rise temp. speed: 3°C/sec max.		
zone	Preheat temp.: 100~130°C		
Actual	Peak temp. : 250~260°C		
heating	Peak time(T1+T2): 4~6 sec		

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400°C

Part Number Structure ΖI 20 S 05 M K 24 Package Type Ultra-wide 4:1 Output Power Input Voltage Range **Output Quantity** Output Voltage VDC 2" X 1" VDC Input Voltage Range 20 Watt 24: 9 36 S: Single 05: 48: 75 VDC D: Dual 12: 12 VDC 18 VDC VDC 110: 40 160 15: 15 VDC 24:

MTBF and Reliability

The MTBF of MKZI20 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit	
MKZI20-24S05	873,800		
MKZI20-24S12	1,180,000		
MKZI20-24S15	1,179,000	-	
MKZI20-24S24	1,179,000		
MKZI20-24D12	1,042,000		
MKZI20-24D15	1,041,000		
MKZI20-48S05	873,000		
MKZI20-48S12	1,290,000		
MKZI20-48S15	1,290,000	lla	
MKZI20-48S24	1,289,000	Hours	
MKZI20-48D12	1,142,000		
MKZI20-48D15	1,142,000		
MKZI20-110S05	665,100		
MKZI20-110S12	927,700		
MKZI20-110S15	939,300		
MKZI20-110S24	1,051,000		
MKZI20-110D12	1,041,000		
MKZI20-110D15	1,041,000		