



### **MKZI40 Series EC Note**

DC-DC CONVERTER 40W, Reinforced Insulation, Railway Certified

### Features

- Industrial Standard 2"×1" Package
- Ultra-wide Input Range 36-160VDC
- I/O Isolation 3000VAC with Reinforced Insulation
- Excellent Efficiency up to 90%
- Operating Ambient Temp. Range -40°C to +77.5°C
- No Min. Load Requirement
- Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- Railway EMC Standard EN 50121-3-2 Approved
- Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

### Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

### **Product Overview**

The MINMAX MKZI40 series is a latest generation of 40 Watt railway certified and isolated DC-DC power modules with ultra-wide input range of 36-160Vin for railway DC system and 7 models available for 5/12/15/24/54/±12/±15VDC tightly output voltage within compact size 2"x1" size with shielded and encapsulated package which specifically design for railway/railroad, battery-powered and harsh environmental applications. Key performance featuring high I/O isolation 3000VAC with reinforced insulation, high efficiency up to 90%, operating ambient temp. range -40°C to +77.5°C, no min. load requirement, very low no-load power consumption, remote on/off, output voltage trim, build-in fault condition protection include under-voltage, overload, over-voltage and short circuit protection.

The MKZI40 series complies with railway certification EN 50155 (IEC 60571) which conform to vibration and shock/bump test EN 61373 approved, cooling/dry/damp heat test IEC/EN 60068-2-1,2,30 approved, railway EMC standard EN 50121-3-2 approved and fire protection test EN 45545-2 approved. The MKZI40 series has been intensely qualified to safety approval UL/cUL/IEC/EN 62368-1 with CB report and CE marking which offer a solution for the applications where wide input voltage range, high efficiency for wide operating ambient temp. range, isolated power with high I/O isolation & insulation level, robust environmental & mechanical sustainability and even railway certification are required.

#### Table of contents

| Model Selection Guide                                     | P2  | External Output Trimming      | . P20 |
|-----------------------------------------------------------|-----|-------------------------------|-------|
| Input Specifications                                      | P2  | Test Setup                    | . P21 |
| Remote On/Off Control                                     | P2  | Technical Notes               | . P21 |
| Output Specifications                                     | P2  | Railway EN 50155 Certified    | . P22 |
| General Specifications                                    | P3  | Remote On/Off Implementation  | . P22 |
| EMC Specifications                                        | P3  | Packaging Information         | . P23 |
| Environmental Specifications                              | P3  | Wave Soldering Considerations | . P24 |
| Characteristic Curves                                     | P4  | Hand Welding Parameter        | . P24 |
| Package Specifications                                    | P18 | Part Number Structure         | . P25 |
| Recommended Pad Layout for Single & Dual Output Converter | P20 | MTBF and Reliability          | . P25 |

Date:2023-08-30 Rev:23





### **Model Selection Guide**

| Model Model   | Input        | Output  | Output | Output  | Ing        | Nut      | Over       | Max.          | Efficiency |
|---------------|--------------|---------|--------|---------|------------|----------|------------|---------------|------------|
|               | ·            |         | · ·    |         | · ·        |          |            | -             |            |
| Number        | Voltage      | Voltage | Power  | Current | Cur        | rent     | Voltage    | capacitive    | (typ.)     |
|               | (Range)      |         |        | Max.    | @Max. Load | @No Load | Protection | Load          | @Max. Load |
|               | VDC          | VDC     | W      | mA      | mA(typ.)   | mA(typ.) | VDC        | μF            | %          |
| MKZI40-110S05 |              | 5       | 40.00  | 8000    | 413        |          | 6.2        | 13600         | 88         |
| MKZI40-110S12 |              | 12      | 39.96  | 3330    | 408        |          | 15         | 2400          | 89         |
| MKZI40-110S15 | 110          | 15      | 40.05  | 2670    | 409        |          | 18         | 1500          | 89         |
| MKZI40-110S24 | (36~160)     | 24      | 40.08  | 1670    | 409        | 40       | 30         | 600           | 89         |
| MKZI40-110S54 | ( 30 ~ 100 ) | 54      | 40.01  | 741     | 404        |          | 66         | 130           | 90         |
| MKZI40-110D12 |              | ±12     | 40.08  | ±1670   | 409        |          | ±15        | 1200#         | 89         |
| MKZI40-110D15 |              | ±15     | 39.90  | ±1330   | 408        |          | ±18        | 750#          | 89         |
|               |              |         |        |         |            |          | #          | For each outp | ut         |

# For each output

| Input Specifications             |            |      |          |         |      |
|----------------------------------|------------|------|----------|---------|------|
| Parameter                        | Model      | Min. | Тур.     | Max.    | Unit |
| Input Surge Voltage (100ms. max) |            | -0.7 |          | 170     | VDC  |
| Start-Up Threshold Voltage       |            |      |          | 36      |      |
| Under Voltage Shutdown           | All Models | 30   | 33       | 35.5    |      |
| Start Up Time                    |            |      | 30       | 100     | mS   |
| Input Filter                     |            |      | Internal | Рі Туре |      |

| Remote On/Off Control       |               |                  |      |      |      |
|-----------------------------|---------------|------------------|------|------|------|
| Parameter                   | Conditions    | Min.             | Тур. | Max. | Unit |
| Converter On                | 3.5V ~ 12V    | or Open Circuit  |      |      |      |
| Converter Off               | 0V ~ 1.2V c   | or Short Circuit |      |      |      |
| Control Input Current (on)  | Vctrl = 5.0V  |                  | 0.5  |      | mA   |
| Control Input Current (off) | Vctrl = 0V    |                  | -0.5 |      | mA   |
| Control Common              | Referenced to | o Negative Inpu  | ut   |      |      |
| Standby Input Current       | Nominal Vin   |                  | 2.5  |      | mA   |

### **Output Specifications**

| Output Specifications              |                       |                             |                                  |                |                | ,        |                   |
|------------------------------------|-----------------------|-----------------------------|----------------------------------|----------------|----------------|----------|-------------------|
| Parameter                          |                       | Conditions                  |                                  | Min.           | Тур.           | Max.     | Unit              |
| Output Voltage Setting Accuracy    |                       |                             |                                  |                |                | ±1.0     | %Vnom.            |
| Output Voltage Balance             | C                     | ual Output, Balanced        | Loads                            |                |                | ±2.0     | %                 |
| Line Regulation                    | V                     | ′in=Min. to Max. @ Fเ       | III Load                         |                |                | ±0.2     | %                 |
| Land Desulation                    |                       | 00/ to 1000/                | Single Output                    |                |                | ±0.5     | %                 |
| Load Regulation                    | Io=0% to 100%         |                             | Dual Output                      |                |                | ±1.0     | %                 |
| Minimum Load                       |                       | No minimum Load Requirement |                                  |                |                |          |                   |
|                                    |                       | 5Vo                         |                                  |                | 75             | 85       | mV <sub>P-P</sub> |
| Ripple & Noise                     | 0-20 MHz<br>Bandwidth | 12Vo,15Vo,<br>±12Vo, ±15Vo  | Measured with a<br>1µF/100V MLCC |                | 125            | 140      | mV <sub>P-P</sub> |
|                                    |                       | 24Vo                        |                                  |                | 150            | 170      | mV <sub>P-P</sub> |
|                                    |                       | 54Vo                        |                                  |                | 250            | 280      | mV <sub>P-P</sub> |
| Transient Recovery Time            |                       |                             |                                  |                | 250            |          | µsec              |
| Transient Response Deviation       |                       | 25% Load Step Char          | ige (2)                          |                | ±3             | ±5       | %                 |
| Temperature Coefficient            |                       |                             |                                  |                |                | ±0.02    | %/°C              |
|                                    |                       |                             | Other Models                     |                |                | ±10      | %                 |
| Trim Up / Down Range (See Page 20) | % of Nomi             | nal Output Voltage          | 54Vo Output                      |                |                | +5 / -15 | %                 |
| Over Load Protection               |                       | Hiccup                      | · · ·                            | 110            | 150            | 185      | %                 |
| Short Circuit Protection           |                       | Continu                     | ous, Automatic Reco              | very (Hiccup N | Node 0.5Hz typ | ).)      |                   |



Тур.

----

Max.

---

Unit

VAC

| General Specifications                 |                                             |      |
|----------------------------------------|---------------------------------------------|------|
| Parameter                              | Conditions                                  | Min. |
| I/O Isolation Voltage                  | Reinforced Insulation, Rated For 60 Seconds | 3000 |
| Isolation Voltage Input/Output to case | Rated For 60 Seconds                        | 1500 |
| I/O Isolation Resistance               | 500 VDC                                     | 1000 |
|                                        |                                             |      |

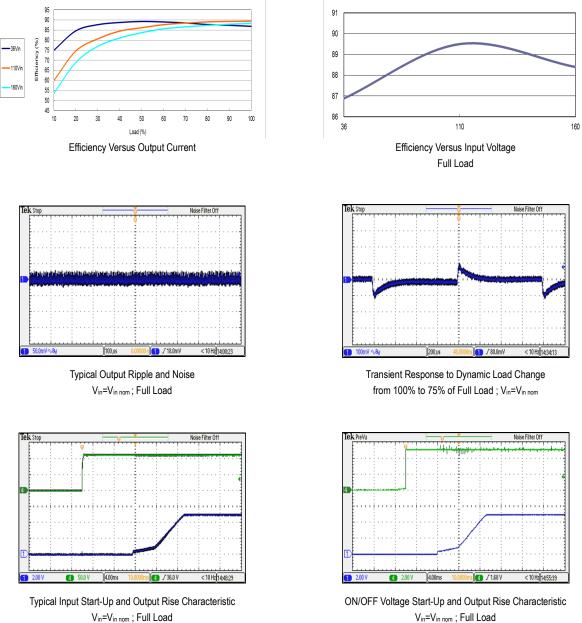
500 VAC --------000 MΩ -------I/O Isolation Capacitance 100kHz, 1V ----1500 --рF Switching Frequency 220 kHz 265 310 MTBF(calculated) MIL-HDBK-217F@25°C Full Load, Ground Benign 900,000 --------Hours Safety Approval UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report), EN 50155, IEC 60571

#### **EMC Specifications**

| Parameter          |                    | Standards & Level                                 |                              | Performance |  |  |  |  |  |
|--------------------|--------------------|---------------------------------------------------|------------------------------|-------------|--|--|--|--|--|
| General            |                    | Compliance with EN 50121-3-2 Railway Applications |                              |             |  |  |  |  |  |
| <b>ENU</b>         | Conduction         |                                                   |                              | Class A     |  |  |  |  |  |
| EMI <sub>(5)</sub> | Radiation          | EN 55032, EN 55011                                | With external components     | Class A     |  |  |  |  |  |
|                    | EN 55035           |                                                   |                              |             |  |  |  |  |  |
|                    | ESD                | Direct discharge                                  | Indirect discharge HCP & VCP | А           |  |  |  |  |  |
|                    | ESD                | EN 61000-4-2 Air ± 8kV, Contact ± 6kV             | Contact ± 6kV                | A           |  |  |  |  |  |
| TMC                | Radiated immunity  | EN 61000-4-3                                      | 20V/m                        | А           |  |  |  |  |  |
| EMS <sub>(5)</sub> | Fast transient     | EN 61000-4-4                                      | ±2kV                         | А           |  |  |  |  |  |
|                    | Surge              | EN 61000-4-5 ±2kV                                 |                              | А           |  |  |  |  |  |
|                    | Conducted immunity | EN 61000-4-6                                      | 10Vrms                       | А           |  |  |  |  |  |
|                    | PFMF               | EN61000-4-8 100A/M for Continu                    | ious; 1000A/M for 1 Sec.     | А           |  |  |  |  |  |

| Environmental Specifications                      |                                             |                 |      |      |          |
|---------------------------------------------------|---------------------------------------------|-----------------|------|------|----------|
| Parameter                                         | Conditions / Model                          | Min.            | Тур. | Max. | Unit     |
| Operating Temperature Range                       | MKZI40-110S05                               |                 |      | +60  |          |
| Nominal Vin, Load 100% Inom.                      | MKZI40-110S12, MKZI40-110S15, MKZI40-110S24 | -40             |      | +65  | °C       |
| (for Power Derating see relative Derating Curves) | MKZI40-110S54, MKZI40-110D12, MKZI40-110D15 |                 |      | C0+  |          |
| Thermal Impedance                                 | 20LFM Convection                            | 12              |      |      | °C/W     |
| Case Temperature                                  |                                             |                 |      | +105 | °C       |
| Over Temperature Protection (Case)                |                                             |                 | +115 |      | °C       |
| Storage Temperature Range                         |                                             | -50             |      | +125 | °C       |
| Humidity (non condensing)                         |                                             |                 |      | 95   | % rel. H |
| Altitude                                          |                                             |                 |      | 4000 | М        |
| Cooling                                           | Compliance to                               | IEC/EN60068-    | 2-1  |      |          |
| Dry Heat                                          | Compliance to                               | IEC/EN60068-    | 2-2  |      |          |
| Damp Heat                                         | Compliance to                               | EC/EN60068-2    | 2-30 |      |          |
| Shock & Vibration Test                            | Compliance t                                | o IEC/EN 6137   | 73   |      |          |
| Operating Humidity (non condensing)               |                                             |                 |      | 95   | % rel. H |
| RFI                                               | Six-Sided Shie                              | elded, Metal Ca | ise  |      |          |
| Lead Temperature (1.5mm from case for 10Sec.)     |                                             |                 |      | 260  | °C       |

#### Notes


1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

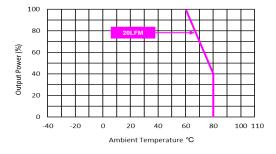
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Do not exceed maximum power specification when adjusting output voltage.
- 7 Specifications are subject to change without notice.



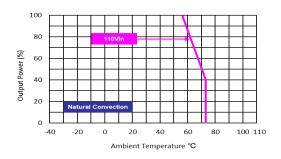
### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110S05  $\,$ 

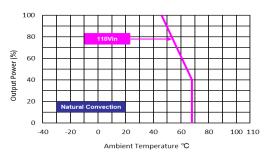



Vin=Vin nom ; Full Load

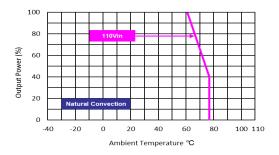
Date:2023-08-30 Rev:23




#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110S05 (continued)



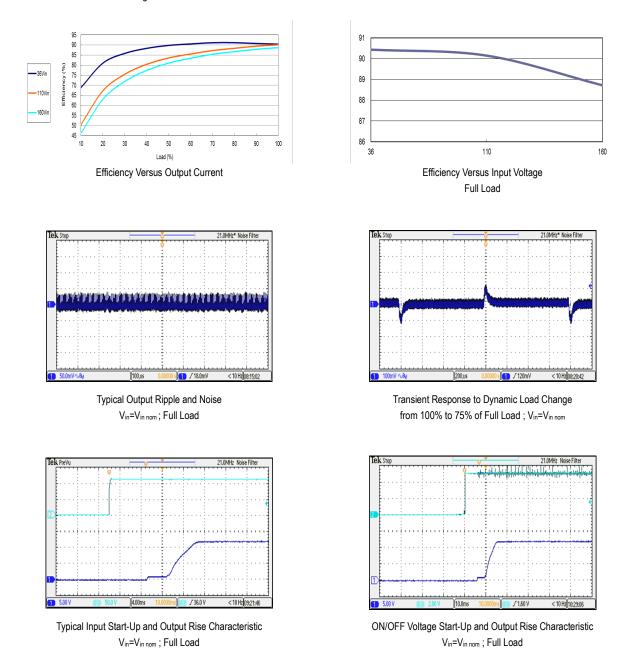

Derating Output Power Versus Ambient Temperature Vin=Vin nom



Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



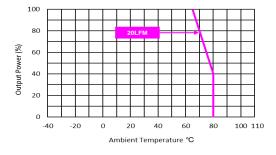
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



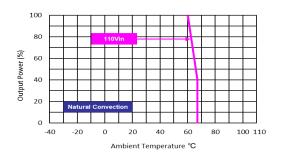

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



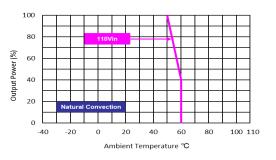
### **Characteristic Curves**


All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110S12  $\,$ 

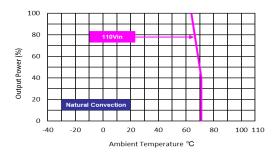





#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110S12 (continued)




Derating Output Power Versus Ambient Temperature Vin=Vin nom

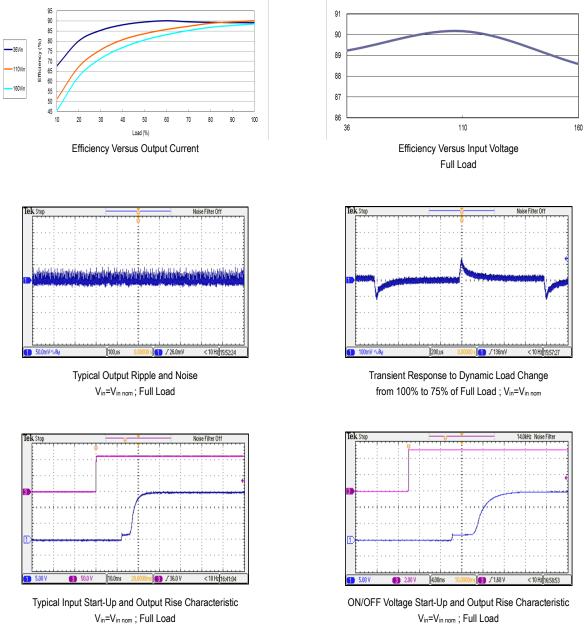


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



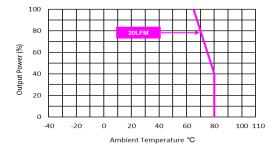

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Date:2023-08-30 Rev:23

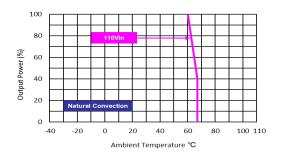


### Characteristic Curves

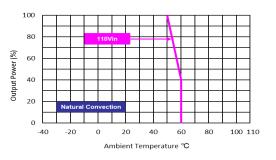
All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110S15  $\,$ 



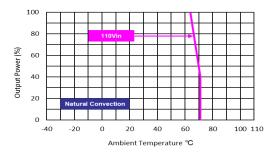

Vin=Vin nom ; Full Load




#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110S15 (continued)




Derating Output Power Versus Ambient Temperature Vin=Vin nom

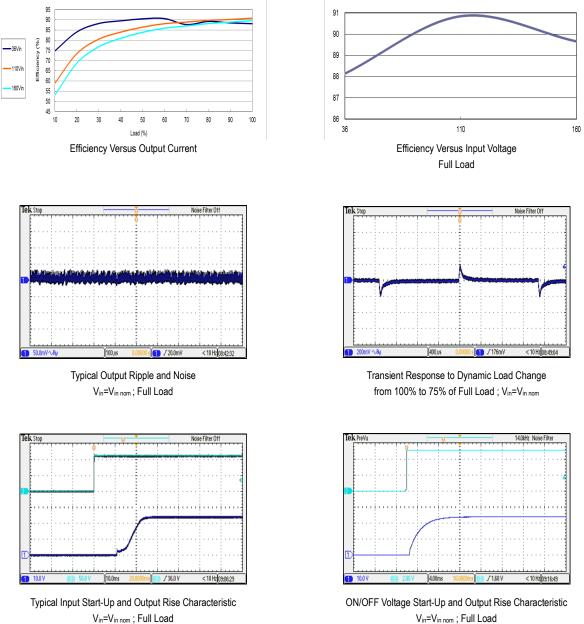


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



Derating Output Power Versus Ambient Temperature (with HS5 heatsink)




Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

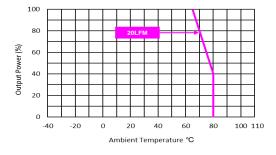
Date:2023-08-30 Rev:23



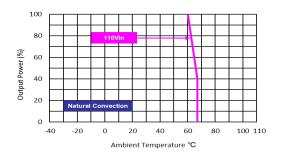
### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110S24  $\,$ 

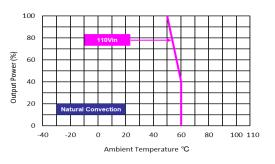



Vin=Vin nom ; Full Load

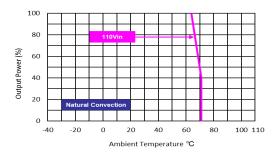
Date:2023-08-30 Rev:23




#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110S24 (continued)




Derating Output Power Versus Ambient Temperature Vin=Vin nom

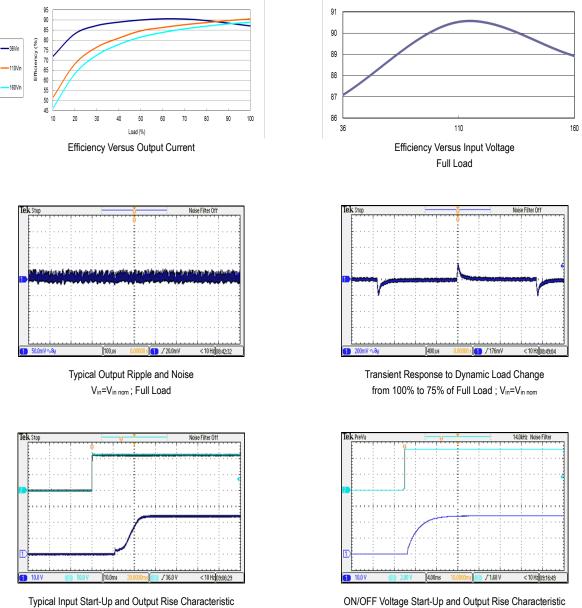


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



Derating Output Power Versus Ambient Temperature (with HS5 heatsink)




Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Date:2023-08-30 Rev:23

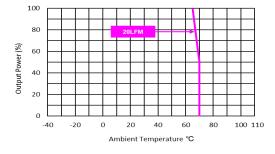


### **Characteristic Curves**

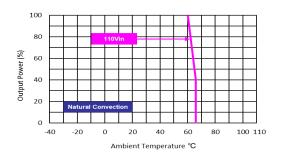
All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110S54  $\,$ 



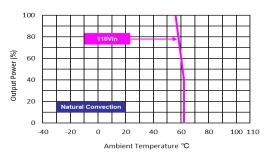
Vin=Vin nom ; Full Load


ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

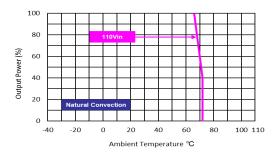
Date:2023-08-30 Rev:23




### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110S54 (continued)




Derating Output Power Versus Ambient Temperature Vin=Vin nom

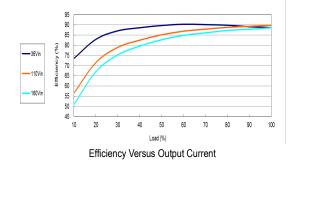


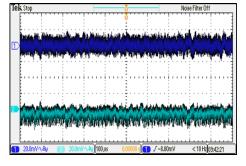
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



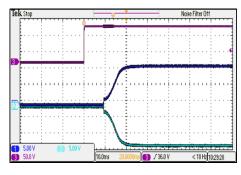
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



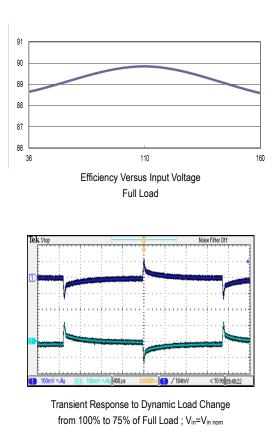

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

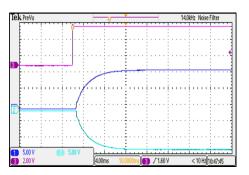

Date:2023-08-30 Rev:23




#### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110D12  $\,$ 



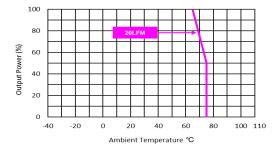




Typical Output Ripple and Noise  $V_{in}$ =V<sub>in</sub> nom; Full Load

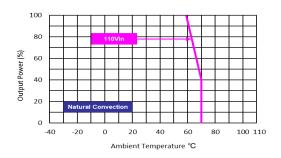


Typical Input Start-Up and Output Rise Characteristic  $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$ 

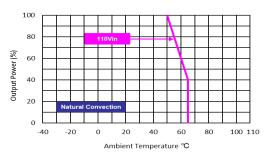




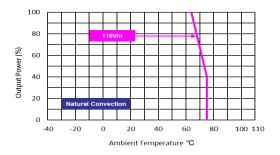

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V\_{in}=V\_{in nom}\$ ; Full Load




#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110D12 (continued)




Derating Output Power Versus Ambient Temperature Vin=Vin nom

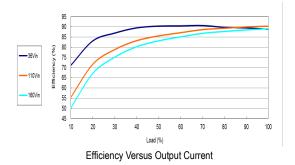


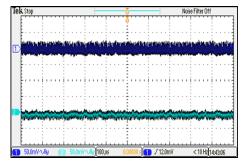
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



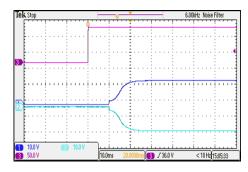
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



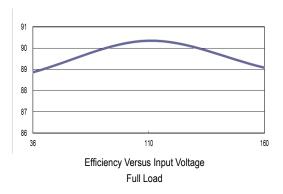

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

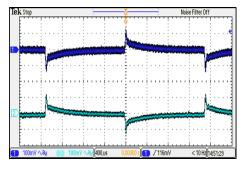

Date:2023-08-30 Rev:23



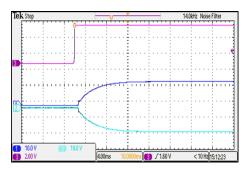

### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MKZI40-110D15  $\,$ 




Typical Output Ripple and Noise  $V_{in}$ =V<sub>in</sub> nom; Full Load



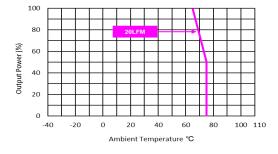

Typical Input Start-Up and Output Rise Characteristic \$\$V\_{in}=V\_{in\,nom}\$ ; Full Load



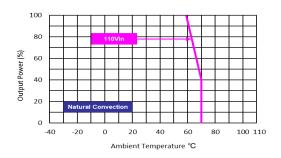


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ;  $V_{in}$ =V<sub>in nom</sub>

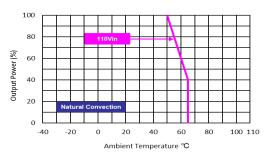



ON/OFF Voltage Start-Up and Output Rise Characteristic  $V_{\text{in}}{=}V_{\text{in nom}}$  ; Full Load

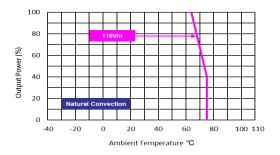
Date:2023-08-30 Rev:23




#### **Characteristic Curves**


All test conditions are at 25°C The figures are identical for MKZI40-110D15 (continued)

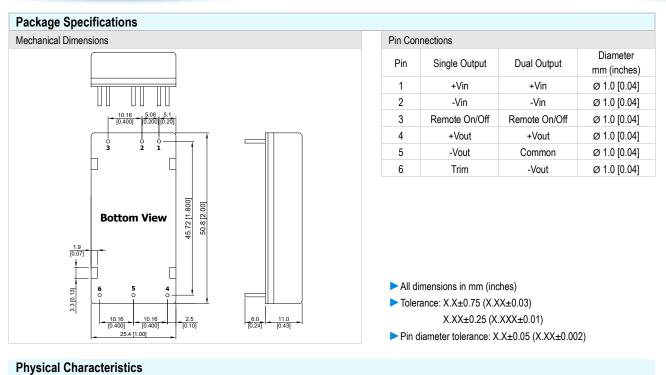



Derating Output Power Versus Ambient Temperature Vin=Vin nom



Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

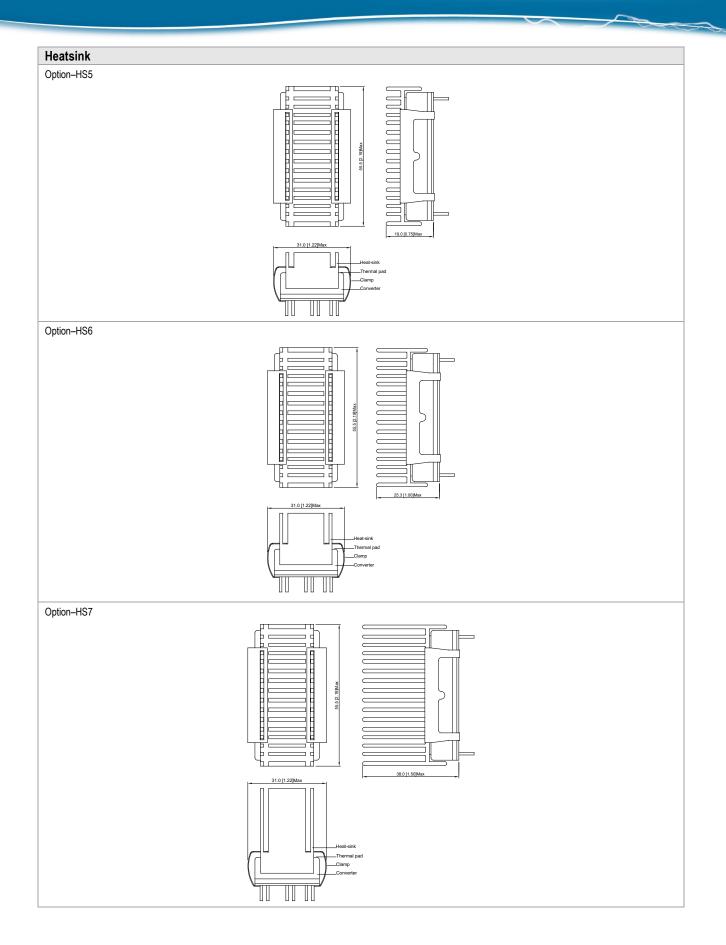



Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

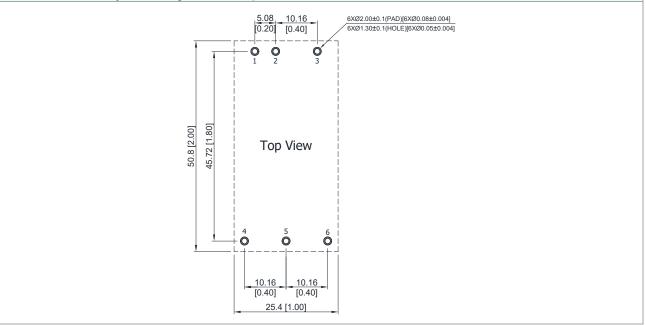
Date:2023-08-30 Rev:23





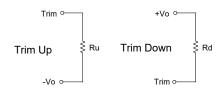

#### 50.8x25.4x11.0 mm (2.0x1.0x0.43 inches) Case Size Case Material Metal With Non-Conductive Baseplate **Base Material** FR4 PCB (flammability to UL 94V-0 rated) Insulated Frame Material Non-Conductive Black Plastic (flammability to UL 94V-0 rated) Pin Material Copper Alloy Silicone (UL 94V-0) Potting Material : Weight : 51.5g

Date:2023-08-30 Rev:23






Date:2023-08-30 Rev:23




### Recommended Pad Layout for Single & Dual Output Converter



#### **External Output Trimming**

Output can be externally trimmed by using the method shown below



|            | MKZI40    | -110S05 | MKZI40    | -110S12 | MKZI40    | -110S15 | MKZI40    | -110S24 | MKZI40-   | 110S54  |
|------------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|
| Trim Range | Trim down | Trim up |
| (%)        | (kΩ)      | (kΩ)    |
| 1          | 156.81    | 119.77  | 419.81    | 344.74  | 602.92    | 482.88  | 598.97    | 486.83  | 1946.08   | 487.21  |
| 2          | 70.69     | 53.70   | 187.68    | 154.37  | 269.91    | 215.89  | 267.93    | 217.87  | 907.19    | 191.10  |
| 3          | 41.99     | 31.67   | 110.30    | 90.92   | 158.91    | 126.89  | 157.59    | 128.21  | 560.89    | 92.40   |
| 4          | 27.64     | 20.66   | 71.61     | 59.19   | 103.41    | 82.40   | 102.42    | 83.88   | 387.75    | 43.05   |
| 5          | 19.03     | 14.05   | 48.40     | 40.15   | 70.10     | 55.70   | 69.31     | 56.49   | 283.86    | 13.44   |
| 6          | 13.29     | 9.65    | 32.93     | 27.46   | 47.90     | 37.90   | 47.25     | 38.56   | 214.60    |         |
| 7          | 9.18      | 6.50    | 21.87     | 18.39   | 32.05     | 25.18   | 31.48     | 25.75   | 165.13    |         |
| 8          | 6.11      | 4.14    | 13.58     | 11.59   | 20.15     | 15.65   | 19.66     | 16.14   | 128.02    |         |
| 9          | 3.72      | 2.31    | 7.13      | 6.31    | 10.90     | 8.23    | 10.46     | 8.67    | 99.16     |         |
| 10         | 1.80      | 0.84    | 1.98      | 2.07    | 3.50      | 2.30    | 3.11      | 2.69    | 76.08     |         |
| 11         |           |         |           |         |           |         |           |         | 57.19     |         |
| 12         |           |         |           |         |           |         |           |         | 41.45     |         |
| 13         |           |         |           |         |           |         |           |         | 28.13     |         |
| 14         |           |         |           |         |           |         |           |         | 16.71     |         |
| 15         |           |         |           |         |           |         |           |         | 6.82      |         |



#### **Test Setup**

#### Peak-to-Peak Output Noise Measurement Test

Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.



#### **Technical Notes**

#### Remote On/Off

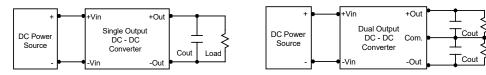
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

#### **Overload Protection**

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

#### Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

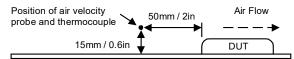

#### Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 kHz) capacitor of a 1µF for the 110V input devices.

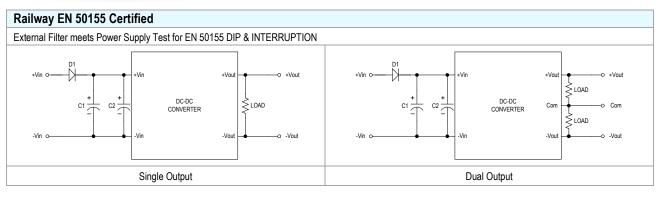


#### **Output Ripple Reduction**

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.



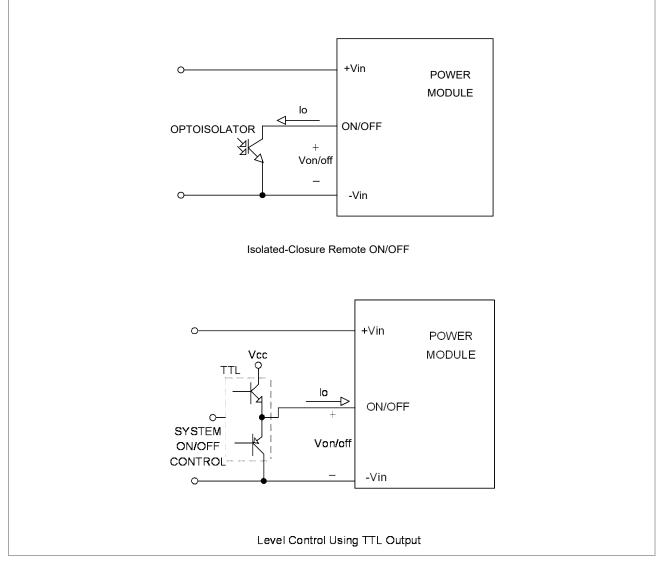

#### Maximum Capacitive Load


The MKZI40 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

#### **Thermal Considerations**

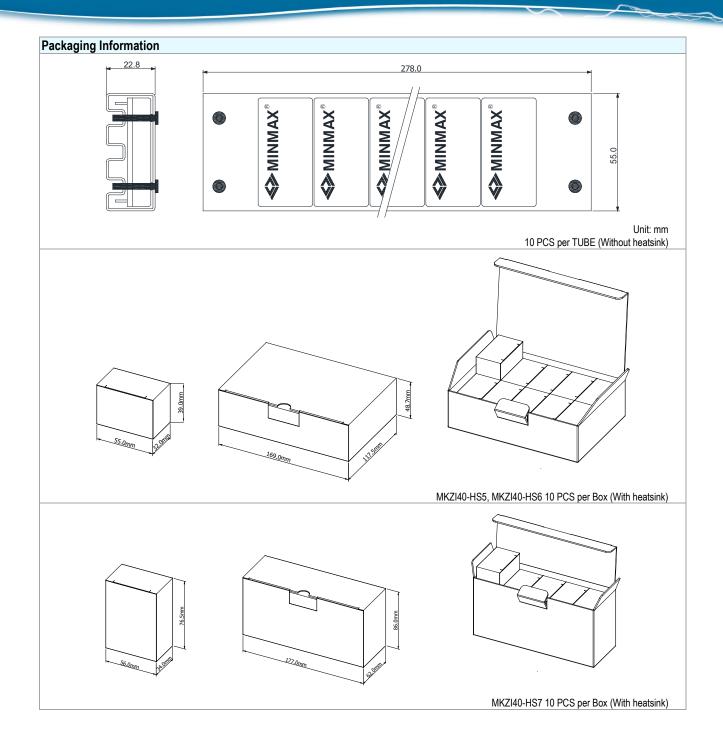
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.








| Model         | D1     | C1, C2                            |
|---------------|--------|-----------------------------------|
| MKZI40-110SXX | IN5408 | 390µF/200V<br>CHEMI-CON KY Series |
| MKZI40-110DXX | IN5408 | 390µF/200∨<br>CHEMI-CON KY Series |

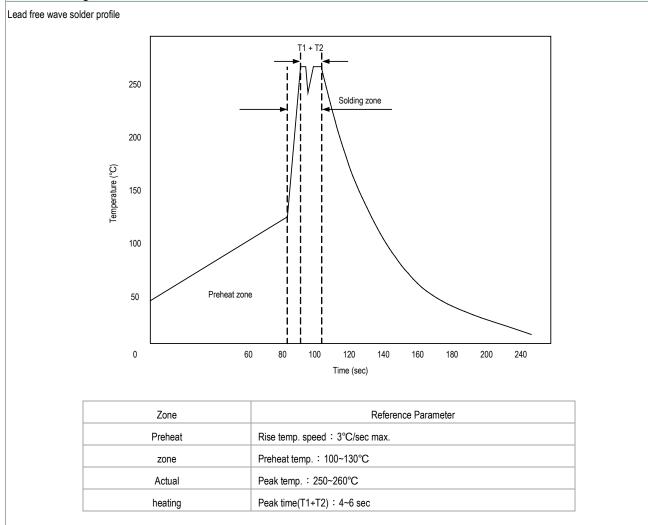

### **Remote On/Off Implementation**

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.



Date:2023-08-30 Rev:23






MKZI40 Series - EC Notes 23

Date:2023-08-30 Rev:23



#### Wave Soldering Considerations



### Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag

Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2023-08-30 Rev:23



| Part N | lumber Structu | ire                 |              |      |        |       |        |     |       |             |     |         |      |
|--------|----------------|---------------------|--------------|------|--------|-------|--------|-----|-------|-------------|-----|---------|------|
| M      | K              | ZI                  | 40           |      |        | 110   |        |     |       | S           |     | 05      |      |
|        | Package Type   | Ultra-wide 4:1      | Output Power | Ir   | nput V | oltag | e Rang | je  | Outpu | It Quantity | Out | tput Vo | tage |
|        | 2" X 1"        | Input Voltage Range | 40 Watt      | 110: | 40     | ~     | 160    | VDC | S:    | Single      | 05: | 5       | VDC  |
|        |                |                     |              |      |        |       |        |     | D:    | Dual        | 12: | 12      | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             | 15: | 15      | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             | 24: | 24      | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             | 54: | 54      | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             | 12: | ±12     | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             | 15: | ±15     | VDC  |
|        |                |                     |              |      |        |       |        |     |       |             |     |         |      |

### MTBF and Reliability

The MTBF of MKZI40 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

| Model         | MTBF      | Unit  |  |  |  |
|---------------|-----------|-------|--|--|--|
| MKZI40-110S05 | 937,394   |       |  |  |  |
| MKZI40-110S12 | 1,085,054 |       |  |  |  |
| MKZI40-110S15 | 1,106,075 |       |  |  |  |
| MKZI40-110S24 | 1,131,663 | Hours |  |  |  |
| MKZI40-110S54 | 1,251,296 |       |  |  |  |
| MKZI40-110D12 | 1,123,028 |       |  |  |  |
| MKZI40-110D15 | 1,119,825 |       |  |  |  |

Date:2023-08-30 Rev:23