

MRA60C Series EC Note

DC-DC Power Module 60W

Features

- ► Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- ► 80-160VDC Wide Input Voltage Range
- ► Fully Regulated Output Voltage
- ► High Efficiency up to 89%
- ▶ I/O Isolation 3000VAC with Reinforced Insulation, rated for 1000Vrms **Working Voltage**
- ▶ Operating Ambient Temp. Range -40°C to +90.5°C
- ► No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ➤ Remote On/Off Control
- ► EMI Emission EN 55032 Class A Approved
- ► EMC Immunity EN61000-4-2,3,4,5,6,8 Approved
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- Workstations
- Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MRA60C series is the latest 60Watt isolated DC-DC power module generation with 9 fixed output voltage models: 5 / 5.1 / 12 / 15 / 24 / 48 / ±12 / ±15 / ±24VDC. The wide input range from 80VDC to 160VDC is specifically for electricity and renewable energy field applications within the usage of terminal strip connectors in chassis and DIN-Rail package.

The key performances are: 3000VAC I/O Isolation, reinforced insulation, high efficiency, wide operating ambient temp. range -40°C to +90.5°C, no min. load, low no-load power consumption, remote on/off, built-in EMI emission EN 55032 Class A, UVLO, OVP, and SCP. The MRA60C series certificates in safety UL/cUL/IEC/EN 62368-1 with CB report and CE marking and offers a solution for eliminating components of a power board.

Table of contents

Model Selection GuideP2	Characteristic Curves
Input SpecificationsP2	Package SpecificationsP13
·	Test SetupP14
	Technical Notes P14
General Specifications P3	Packaging InformationP15
	Part Number Structure P15
Environmental Specifications	MTBF and ReliabilityP15

Date:2024-03-04 Rev:2

lodel Selection Guid	е							
Model	Input	Output	Output	Inp	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)		Max.	@ Max. Load	@ No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MRA60-110S05C		5	12000	620		6.2	20400	88
MRA60-110S051C		5.1	12000	632		6.2	20400	88
MRA60-110S12C		12	5000	613		15	3540	89
MRA60-110S15C	140	15	4000	613		18	2200	89
MRA60-110S24C	110	24	2500	620	10	30	890	88
MRA60-110S48C	(80 ~ 160)	48	1250	620		60	220	88
MRA60-110D12C		±12	±2500	620		±15	1800#	88
MRA60-110D15C	1	±15	±2000	620		±18	1200#	88
MRA60-110D24C	1	±24	±1250	620		±30	470#	88

For each output

Input Specifications									
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit				
Input Surge Voltage (100 ms max.)		-0.7		170					
Start-Up Threshold Voltage				80	VDC				
Under Voltage Shutdown		65	78						
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30	60	ms				
Input Filter	All Models		Internal Pi Type						

Remote On/Off Control									
Parameter	Conditions	Тур.	Max.	Unit					
Converter On	3.5V ~ 12V or Open Circuit								
Converter Off	0V ~ 1.2V or Short Circuit								
Control Input Current (On)	Vctrl = 5.0V			0.5	mA				
Control Input Current (Off)	Vctrl = 0V			-0.5	mA				
Control Common	Referenced to Negative Input								
Standby Input Current	Nominal Vin		3		mA				

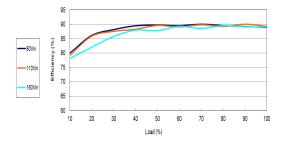
Output Specifications						
Parameter	Cond	litions / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±1.0	±2.0	%Vnom.
Output Voltage Balance	Dual Outp	ut, Balanced Loads			±2.0	%
Line Regulation	Vin=Min. t	o Max. @Full Load		±0.2	±1.0	%
Load Regulation	lo=	0% to 100%		±0.5	±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical L	oad 25/100% Full Load			±5.0	%
Minimum Load		No minimum Loa	d Requiremen	t		
		5V & 5.1V Output Models			100	mV _{P-P}
Ripple & Noise	0-20MHz bandwith	±24V & 48V Output Models			200	mV _{P-P}
		Other Output Models			150	mV _{P-P}
Transient Recovery Time	050/ 1	101 01		250		µsec
Transient Response Deviation	25% Loa	ad Step Change ₍₂₎		±3	±5	%
Temperature Coefficient				±0.02		%/°C
Over Load Protection		Hiccup		150	180	%
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)					

Date:2024-03-04 Rev:2 MRA60C Series – EC Notes 2

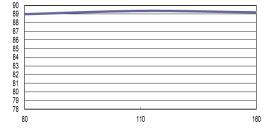
General Specifications									
Parameter	Conditions	Min.	Тур.	Max.	Unit				
I/O Isolation Voltage	60 Seconds Reinforced insulation, rated for 1000Vrms working voltage	3000			VAC				
I/O Isolation Resistance 500 VDC		1000			MΩ				
I/O Isolation Capacitance	100kHz, 1V			3000	pF				
0. %-1:	5V & 5.1V Output Models	160	180	200	kHz				
Switching Frequency	Other Output Models	187	220	253	kHz				
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	217,826			Hours				
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 & 60950-1(CB report)							

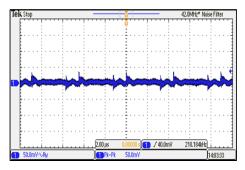
EMC Specifications								
Parameter	Standards & Level							
ЕМІ	Conduction	EN 55022	Mithaut automal components	Class A				
	Radiation	EN 55032	Without external components	Class A				
	EN 55035							
	ESD	Direct discharge	Indirect discharge HCP & VCP					
	EOD	EN 61000-4-2 Air ± 8kV	Contact ±6kV	Α				
EMS	Radiated immunity	EN	61000-4-3 10V/m	A				
EIVIS	Fast transient	EN	l 61000-4-4 ±2kV	Α				
	Surge	EN	EN 61000-4-5 ±2kV					
	Conducted immunity	EN	61000-4-6 10Vrms	Α				
	PFMF	EN	EN 61000-4-8 100A/m					

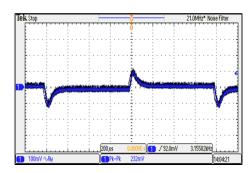
Environmental Specifications									
Parameter	Model	Min.	Max.	Unit					
Operating Temperature Range Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	MRA60-110S05C, MRA60-110S051C		+71						
	MRA60-110S12C, MRA60-110S15C, MRA60-110S24C MRA60-110S48C, MRA60-110D12C, MRA60-110D15C MRA60-110D24C	-40	+76	°C					
Case Temperature			+105	°C					
Storage Temperature Range		-50	+125	°C					
Humidity (non condensing)			95	% rel. H					

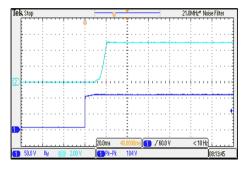

Notes

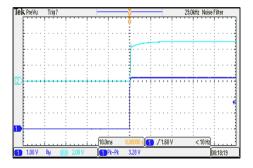
- Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

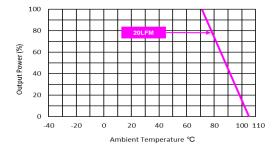

Date: 2024-03-04 Rev: 2 MRA60C Series – EC Notes 3


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110S05C $\,$


Efficiency Versus Output Current

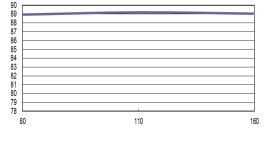

Efficiency Versus Input Voltage Full Load

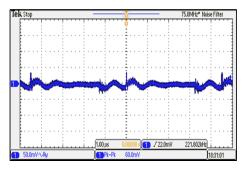

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

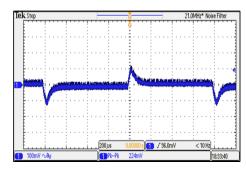

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

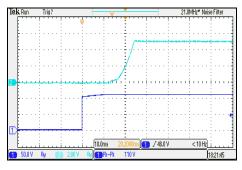
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

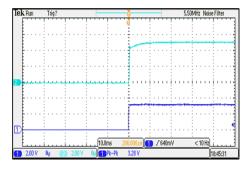

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

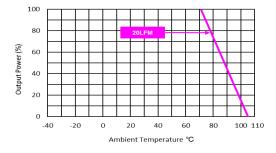

Derating Output Current Versus Ambient Temperature and Airflow V_{in} = V_{in} nom


All test conditions are at 25°C The figures are identical for MRA60-110S051C

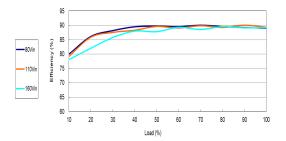

Efficiency Versus Output Current

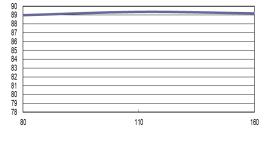

Efficiency Versus Input Voltage Full Load

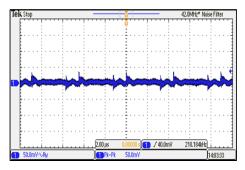

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

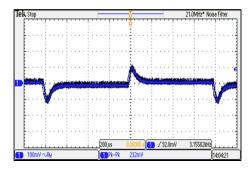

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

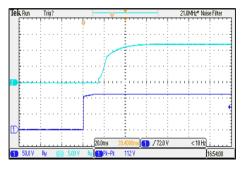
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

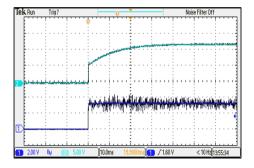

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

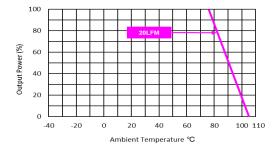

Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110S12C $\,$

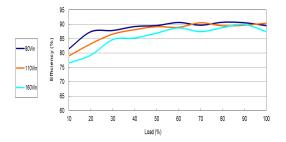

Efficiency Versus Output Current

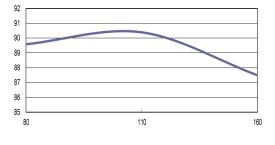

Efficiency Versus Input Voltage Full Load

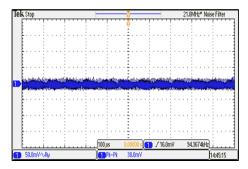

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,Full\,\,Load$

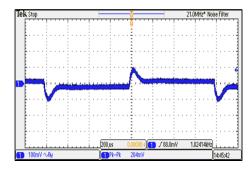

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

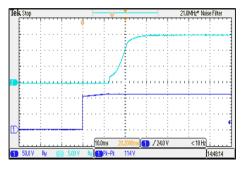
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom} ; Full Load

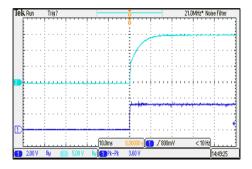

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

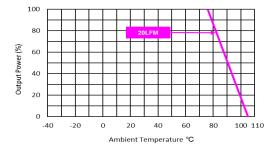

Derating Output Current Versus Ambient Temperature and Airflow


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110S15C $\,$

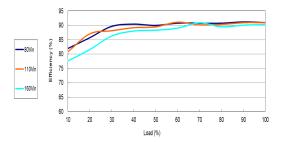

Efficiency Versus Output Current

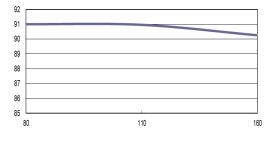

Efficiency Versus Input Voltage Full Load

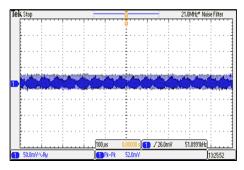

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

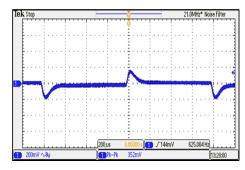

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

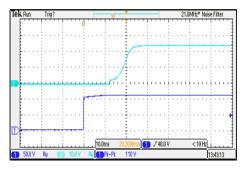
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

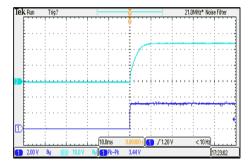

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

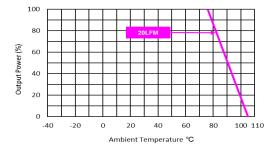

Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110S24C $\,$

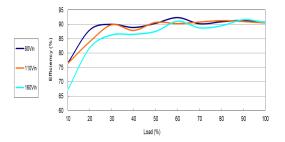

Efficiency Versus Output Current

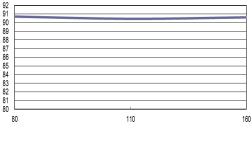

Efficiency Versus Input Voltage Full Load

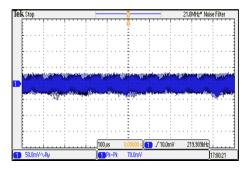

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,Full\,\,Load$

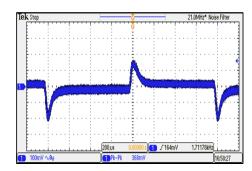

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

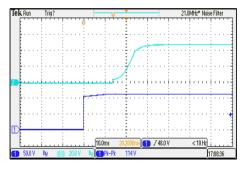
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom} ; Full Load

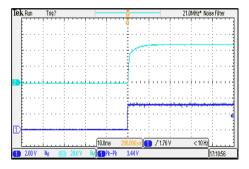

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

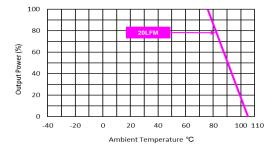

Derating Output Current Versus Ambient Temperature and Airflow


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110S48C

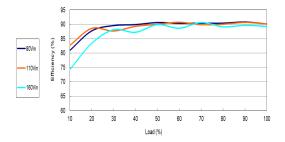

Efficiency Versus Output Current

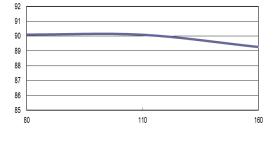

Efficiency Versus Input Voltage Full Load

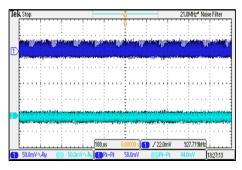

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

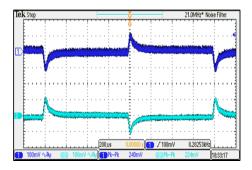

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

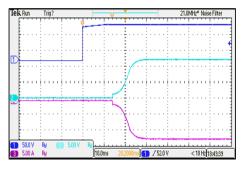
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

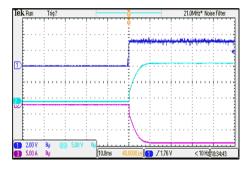

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

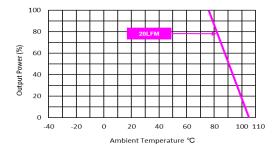

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110D12C

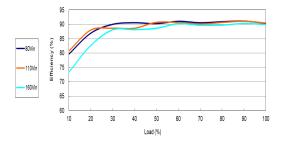

Efficiency Versus Output Current

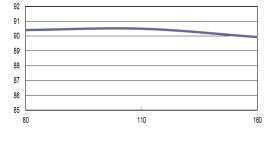

Efficiency Versus Input Voltage Full Load

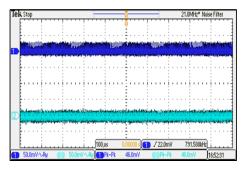

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

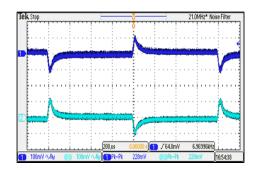

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

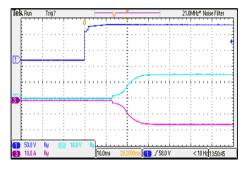
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

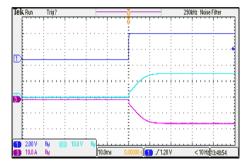

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

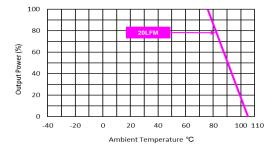

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110D15C

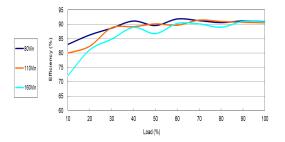

Efficiency Versus Output Current

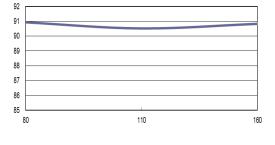

Efficiency Versus Input Voltage Full Load

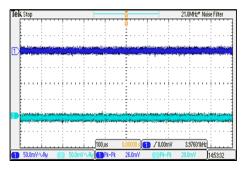

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

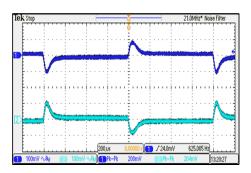

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

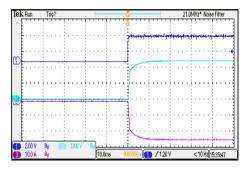

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

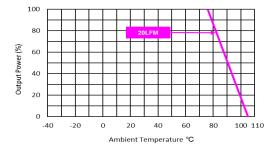

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom


All test conditions are at 25°C $\,$ The figures are identical for MRA60-110D24C

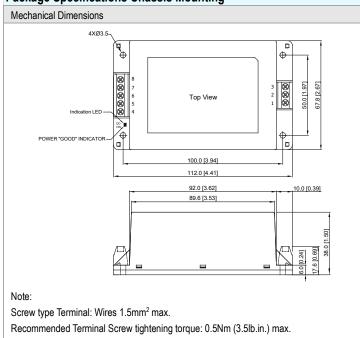

Efficiency Versus Output Current

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

Derating Output Current Versus Ambient Temperature and Airflow V_{in} = V_{in} nom

Package Specifications Chassis Mounting

Connec	Connections								
Pin	Single Output	Dual Output							
1	Remote On/Off	Remote On/Off							
2	-Vin	-Vin							
3	+Vin	+Vin							
4	NC	+Vout							
5	+Vout	NC							
6	NC	Common							
7	-Vout	NC							
8	NC	-Vout							

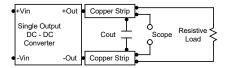
NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: ±0.5 (±0.02)

Physical Characteristics

Case Size : 112.0x67.8x38.0mm (4.41x2.67x1.50 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 300g


Date:2024-03-04 Rev:2

Test Setup

Peak-to-Peak Output Noise Measurement Test

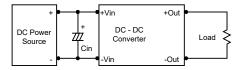
Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

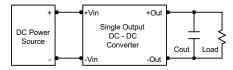
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -100µA.

Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

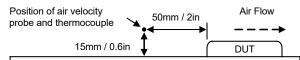
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $10\mu\text{F}$ for the 110V devices.

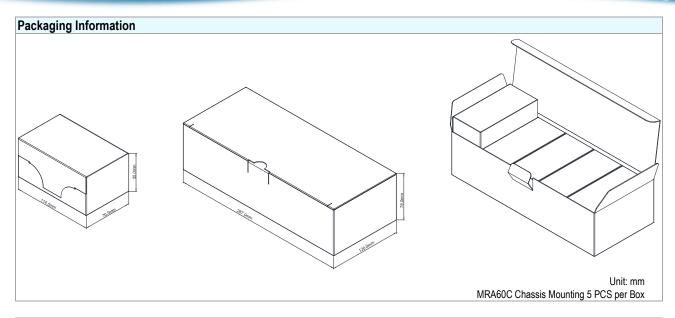
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load

The MRA60C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Date:2024-03-04 Rev:2

Part I	Part Number Structure														
M	R	Α	60	-			110				S		05		C
	Package Type	Wide 2:1	Output Power		lr	put V	oltag	e Rang	je	Outpu	it Quantity	Out	put Vo	Itage	Mounting Type
	2.67" X 4.41"	Input Voltage Range	60 Watt		110:	80	~	160	VDC	S:	Single	05:	5	VDC	Chassis
										D:	Dual	051:	5.1	VDC	
												12:	12	VDC	
												15:	15	VDC	
												24:	24	VDC	
												48:	48	VDC	

MTBF and Reliability

The MTBF of MRA60C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MRA60-110S05C	217,826	
MRA60-110S051C	217,826	
MRA60-110S12C	367,746	
MRA60-110S15C	367,178	
MRA60-110S24C	319,122	Hours
MRA60-110S48C	322,825	
MRA60-110D12C	319,122	
MRA60-110D15C	316,807	
MRA60-110D24C	322,825	