FEATURES
► DIP-24 Plastic Package
 31.8 x 20.3 x 10.2 mm (1.25 x 0.8 x 0.4 inches)
► Wide 2:1 Input Range
► Operating Temp. Range –25°C to +85°C
► Short Circuit Protection
► I/O-isolation 1500 VDC
► 3 Years Product Warranty

PRODUCT OVERVIEW
The MINMAX MIW1000 series is a range of isolated 3W DC/DC converter modules featuring fully regulated output voltages and wide input voltage ranges. The product comes in a DIP-24 plastic package with standard pinout. An excellent efficiency allows an operating temperature range of –25°C to +85°C (with derating). These DC/DC converters offer an economical solution for many cost critical applications in battery-powered equipment and instrumentation.

Model Selection Guide

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Input Voltage (Range)</th>
<th>Output Voltage</th>
<th>Output Current</th>
<th>Input Current</th>
<th>Reflected Ripple Current</th>
<th>Max. capacitive Load</th>
<th>Efficiency (typ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDC</td>
<td>mA</td>
<td>mA (typ.)</td>
<td>mA (typ.)</td>
<td>mA (typ.)</td>
<td>@Max. Load</td>
<td></td>
</tr>
<tr>
<td>MIW1011</td>
<td>5</td>
<td>3.3</td>
<td>600</td>
<td>60</td>
<td>566</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>500</td>
<td>50</td>
<td>668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1012</td>
<td></td>
<td>12</td>
<td>250</td>
<td>25</td>
<td>779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1013</td>
<td></td>
<td>15</td>
<td>200</td>
<td>20</td>
<td>779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1014</td>
<td></td>
<td>±12</td>
<td>±125</td>
<td>±12.5</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1015</td>
<td></td>
<td>±15</td>
<td>±100</td>
<td>±10</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1016</td>
<td></td>
<td>3.3</td>
<td>600</td>
<td>60</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1017</td>
<td>12</td>
<td>5</td>
<td>500</td>
<td>50</td>
<td>267</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>MIW1021</td>
<td>12</td>
<td>12</td>
<td>250</td>
<td>25</td>
<td>305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1019</td>
<td></td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1022</td>
<td></td>
<td>24</td>
<td>600</td>
<td>60</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1023</td>
<td></td>
<td>12</td>
<td>250</td>
<td>25</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1024</td>
<td></td>
<td>±5</td>
<td>±250</td>
<td>±25</td>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1025</td>
<td></td>
<td>±12</td>
<td>±125</td>
<td>±12.5</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1026</td>
<td></td>
<td>±15</td>
<td>±100</td>
<td>±10</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1027</td>
<td>48</td>
<td>3.3</td>
<td>600</td>
<td>60</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1031</td>
<td></td>
<td>5</td>
<td>500</td>
<td>50</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1032</td>
<td></td>
<td>12</td>
<td>250</td>
<td>25</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1033</td>
<td></td>
<td>±5</td>
<td>±250</td>
<td>±25</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1034</td>
<td></td>
<td>±12</td>
<td>±125</td>
<td>±12.5</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1035</td>
<td></td>
<td>±15</td>
<td>±100</td>
<td>±10</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1036</td>
<td>48</td>
<td>3.3</td>
<td>600</td>
<td>60</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1037</td>
<td></td>
<td>5</td>
<td>500</td>
<td>50</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1041</td>
<td></td>
<td>12</td>
<td>250</td>
<td>25</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1042</td>
<td></td>
<td>15</td>
<td>200</td>
<td>20</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1043</td>
<td></td>
<td>±5</td>
<td>±250</td>
<td>±25</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1044</td>
<td></td>
<td>±12</td>
<td>±125</td>
<td>±12.5</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIW1045</td>
<td></td>
<td>±15</td>
<td>±100</td>
<td>±10</td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each output
Input Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Surge Voltage (1 sec. max.)</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5V Input Models</td>
<td>-0.7</td>
<td>---</td>
<td>----</td>
<td>11</td>
<td>VDC</td>
</tr>
<tr>
<td>12V Input Models</td>
<td>-0.7</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24V Input Models</td>
<td>-0.7</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48V Input Models</td>
<td>-0.7</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-Up Voltage</td>
<td>5V Input Models</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>12V Input Models</td>
<td>4.5</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24V Input Models</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48V Input Models</td>
<td>16</td>
<td>24</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Voltage Shutdown</td>
<td>5V Input Models</td>
<td>---</td>
<td>3.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12V Input Models</td>
<td>---</td>
<td>6.5</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24V Input Models</td>
<td>---</td>
<td>11</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48V Input Models</td>
<td>---</td>
<td>22</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Polarity Input Current</td>
<td>All Models</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Input Filter</td>
<td>Pi Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Input Power</td>
<td></td>
<td></td>
<td>1000</td>
<td>2000</td>
<td>mW</td>
</tr>
<tr>
<td>Internal Power Dissipation</td>
<td></td>
<td></td>
<td>2500</td>
<td></td>
<td>mW</td>
</tr>
</tbody>
</table>

Output Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Balance</td>
<td>Dual Output, Balanced Loads</td>
<td>---</td>
<td>±0.5</td>
<td>±2.0</td>
<td>%</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>Vin=Min. to Max.</td>
<td>---</td>
<td>±0.2</td>
<td>±0.5</td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>Io=10% to 100%</td>
<td>---</td>
<td>±0.2</td>
<td>±0.5</td>
<td>%</td>
</tr>
<tr>
<td>Ripple & Noise (20MHz)</td>
<td></td>
<td>---</td>
<td>45</td>
<td>60</td>
<td>mV_{P-P}</td>
</tr>
<tr>
<td>Ripple & Noise (20MHz)</td>
<td>Over Line, Load & Temp.</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>mV_{P-P}</td>
</tr>
<tr>
<td>Ripple & Noise (20MHz)</td>
<td></td>
<td>---</td>
<td>---</td>
<td>15</td>
<td>mV_{rms}</td>
</tr>
<tr>
<td>Transient Recovery Time</td>
<td>50% Load Step Change</td>
<td>---</td>
<td>300</td>
<td>500</td>
<td>uS</td>
</tr>
<tr>
<td>Transient Response Deviation</td>
<td></td>
<td>---</td>
<td>±3</td>
<td>±5</td>
<td>%</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td></td>
<td>---</td>
<td>±0.01</td>
<td>±0.02</td>
<td>%/°C</td>
</tr>
<tr>
<td>Over Load Protection</td>
<td>Foldback</td>
<td>120</td>
<td>TBD</td>
<td>---</td>
<td>%</td>
</tr>
<tr>
<td>Short Circuit Protection</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Isolation Voltage (rated)</td>
<td>60 Seconds</td>
<td>1500</td>
<td>---</td>
<td>---</td>
<td>VDC</td>
</tr>
<tr>
<td>I/O Isolation Resistance</td>
<td>500 VDC</td>
<td>1000</td>
<td>---</td>
<td>---</td>
<td>MQ</td>
</tr>
<tr>
<td>I/O Isolation Capacitance</td>
<td>100KHz, 1V</td>
<td>65</td>
<td>100</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>300</td>
<td>---</td>
<td>---</td>
<td>kHz</td>
</tr>
<tr>
<td>MTBF (calculated)</td>
<td>MIL-HDBK-217F@25°C, Ground Benign</td>
<td>1,000,000</td>
<td>---</td>
<td>---</td>
<td>Hours</td>
</tr>
<tr>
<td>Safety Approvals</td>
<td>UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Fuse

- 5V Input Models | 1500mA Slow-Blow Type | 700mA Slow-Blow Type |
- 12V Input Models | 700mA Slow-Blow Type |
- 24V Input Models | 350mA Slow-Blow Type |
- 48V Input Models | 153mA Slow-Blow Type |

Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range (with Derating)</td>
<td>Ambient</td>
<td>-25</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Case Temperature</td>
<td></td>
<td>---</td>
<td>+90</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>-50</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Humidity (non condensing)</td>
<td></td>
<td>95</td>
<td></td>
<td>% rel. H</td>
</tr>
<tr>
<td>Cooling</td>
<td>Free-Air convection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (1.5mm from case for 10Sec.)</td>
<td>---</td>
<td>260</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
Power Derating Curve

Notes
1. Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
2. Transient recovery time is measured to within 1% error band for a step change in output load of 50% to 100%
3. Ripple & Noise measurement bandwidth is 0-20MHz.
4. These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
5. All DC/DC converters should be externally fused at the front end for protection.
6. Other input and output voltage may be available, please contact factory.
7. That “natural convection” is about 20LFM but is not equal to still air (0 LFM).
8. Specifications subject to change without notice.

Package Specifications

<table>
<thead>
<tr>
<th>Pin Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

NC: No Connection

Physical Characteristics

Case Size	31.8x20.3x10.2mm (1.25x0.80x0.40 Inches)
Case Material	Non-Conductive Black Plastic
Weight	12.4g
Test Configurations

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with an inductor L_in (4.7uH) and C_in (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor C_in offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

![Input Reflected-Ripple Current Test Setup Diagram]

Peak-to-Peak Output Noise Measurement Test

Use a C_out 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

![Peak-to-Peak Output Noise Measurement Test Diagram]

Design & Feature Considerations

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit; it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 8.2uF for the 5V input devices, a 3.3uF for the 12V input devices and a 1.5uF for the 24V and 48V devices.

![Overcurrent Protection Diagram]

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

![Output Ripple Reduction Diagram]

Maximum Capacitive Load

The MIW1000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 1000uF maximum capacitive load for dual outputs and 4000uF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

![Maximum Capacitive Load Diagram]

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

![Thermal Considerations Diagram]