FEATURES
► Smallest Encapsulated 6W Converter
► Industrial Standard DIP-16 Package
► Ultra-wide 4:1 Input Voltage Range
► Fully Regulated Output Voltage
► I/O Isolation 1500 VDC
► Operating Temp. Range -40°C to +90°C
► Low No Load Power Consumption
► No Min. Load Requirement
► Under-voltage, Overload and Short Circuit Protection
► Shielded Metal Case with Insulated Baseplate
► Conducted EMI EN 55032 Class A & FCC Level A Approved
► UL/cUL/IEC/EN 62368-1 (60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW
The MINMAX MDW106 series is the latest generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers a full 6W isolated DC-DC converter within an encapsulated DIP-16 package which occupies only 0.5 in² of PCB space. There are 14 models available for 24, 48VDC with wide 4:1 input voltage range. Further features include under-voltage protection, overload protection, short circuit protection and no min. load requirement as well. An high efficiency allows operating temperatures range of -40°C to +90°C.

These DC-DC converters offer a superior solution for many space-critical applications in battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and many other critical applications where PCB space is limited.

Model Selection Guide

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Input Voltage (Range)</th>
<th>Output Voltage</th>
<th>Output Current</th>
<th>Input Current</th>
<th>Max. capacitive Load</th>
<th>Efficiency (typ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDW106-24S033</td>
<td>24 VDC (9 ~ 36)</td>
<td>3.3 VDC</td>
<td>1500 mA</td>
<td>264 mA(typ.)</td>
<td>680 @Max. Load</td>
<td>78%</td>
</tr>
<tr>
<td>MDW106-24S05</td>
<td>5 VDC</td>
<td>1200 mA</td>
<td>305 mA(typ.)</td>
<td>680 @Max. Load</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>MDW106-24S12</td>
<td>12 VDC</td>
<td>400 mA</td>
<td>291 mA(typ.)</td>
<td>330 @Max. Load</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>MDW106-24S15</td>
<td>15 VDC</td>
<td>250 mA</td>
<td>287 mA(typ.)</td>
<td>330 @Max. Load</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>MDW106-24S24</td>
<td>24 VDC</td>
<td>±12 VDC</td>
<td>±250 mA</td>
<td>150 @Max. Load</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>MDW106-24D12</td>
<td>±15 VDC</td>
<td>±200 mA</td>
<td>±287 mA</td>
<td>150 @Max. Load</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>MDW106-48S033</td>
<td>48 VDC (18 ~ 75)</td>
<td>3.3 VDC</td>
<td>1500 mA</td>
<td>132 mA(typ.)</td>
<td>680 @Max. Load</td>
<td>78%</td>
</tr>
<tr>
<td>MDW106-48S05</td>
<td>5 VDC</td>
<td>1200 mA</td>
<td>152 mA(typ.)</td>
<td>680 @Max. Load</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>MDW106-48S12</td>
<td>12 VDC</td>
<td>500 mA</td>
<td>145 mA(typ.)</td>
<td>330 @Max. Load</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>MDW106-48S15</td>
<td>15 VDC</td>
<td>400 mA</td>
<td>145 mA(typ.)</td>
<td>330 @Max. Load</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>MDW106-48S24</td>
<td>24 VDC</td>
<td>±12 VDC</td>
<td>±250 mA</td>
<td>150 @Max. Load</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>MDW106-48D12</td>
<td>±15 VDC</td>
<td>±200 mA</td>
<td>±144 mA</td>
<td>150 @Max. Load</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>

For each output
Input Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Surge Voltage (1 sec. max.)</td>
<td>24V Input Models</td>
<td>-0.7</td>
<td>---</td>
<td>50</td>
<td>VDC</td>
</tr>
<tr>
<td></td>
<td>48V Input Models</td>
<td>-0.7</td>
<td>---</td>
<td>100</td>
<td>VDC</td>
</tr>
<tr>
<td>Start-Up Threshold Voltage</td>
<td>24V Input Models</td>
<td>---</td>
<td>---</td>
<td>9</td>
<td>VDC</td>
</tr>
<tr>
<td></td>
<td>48V Input Models</td>
<td>---</td>
<td>---</td>
<td>18</td>
<td>VDC</td>
</tr>
<tr>
<td>Under Voltage Shutdown</td>
<td>24V Input Models</td>
<td>---</td>
<td>8</td>
<td>---</td>
<td>VDC</td>
</tr>
<tr>
<td></td>
<td>48V Input Models</td>
<td>---</td>
<td>16</td>
<td>---</td>
<td>VDC</td>
</tr>
</tbody>
</table>

Input Filter

All Models: Internal Pi Type

Output Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Setting Accuracy</td>
<td></td>
<td>---</td>
<td>---</td>
<td>±3.0</td>
<td>%Vnom.</td>
</tr>
<tr>
<td>Output Voltage Balance</td>
<td>Dual Output, Balanced Loads</td>
<td>---</td>
<td>±1.0</td>
<td>±2.0</td>
<td>%</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>Vmin=Min. to Max. @Full Load</td>
<td>---</td>
<td>±0.2</td>
<td>±0.8</td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>lo=0% to 100%</td>
<td>---</td>
<td>±0.5</td>
<td>±1.0</td>
<td>%</td>
</tr>
<tr>
<td>Minimum Load</td>
<td>No minimum Load Requirement</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ripple & Noise</td>
<td>0-20 MHz Bandwidth</td>
<td>---</td>
<td>---</td>
<td>55</td>
<td>mVpp</td>
</tr>
<tr>
<td>Transient Recovery Time</td>
<td>25% Load Step Change</td>
<td>---</td>
<td>---</td>
<td>500</td>
<td>μsec</td>
</tr>
<tr>
<td>Transient Response Deviation</td>
<td></td>
<td>---</td>
<td>±3</td>
<td>±5</td>
<td>%</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td></td>
<td>---</td>
<td>±0.01</td>
<td>±0.02</td>
<td>%/°C</td>
</tr>
<tr>
<td>Over Load Protection</td>
<td>Hiccup</td>
<td>---</td>
<td>150</td>
<td>---</td>
<td>%</td>
</tr>
<tr>
<td>Short Circuit Protection</td>
<td>Hiccup Mode 0.5 Hz typ., Automatic Recovery</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>%</td>
</tr>
</tbody>
</table>

General Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Isolation Voltage</td>
<td>60 Seconds</td>
<td>1500</td>
<td>---</td>
<td>---</td>
<td>VDC</td>
</tr>
<tr>
<td>I/O Isolation Resistance</td>
<td>1 Second</td>
<td>1800</td>
<td>---</td>
<td>---</td>
<td>VDC</td>
</tr>
<tr>
<td>I/O Isolation Capacitance</td>
<td>500 VDC</td>
<td>1000</td>
<td>---</td>
<td>---</td>
<td>pF</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>100KHz, 1V</td>
<td>---</td>
<td>500</td>
<td>---</td>
<td>kHz</td>
</tr>
<tr>
<td>MTBF (calculated)</td>
<td>MIL-HDBK-217F@25°C, Ground Benign</td>
<td>2,951,470</td>
<td>---</td>
<td>---</td>
<td>Hours</td>
</tr>
</tbody>
</table>

Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Ambient Temperature Range (See Power Derating Curve)</td>
<td>-40</td>
<td>+90</td>
<td>°C</td>
</tr>
<tr>
<td>Case Temperature</td>
<td>---</td>
<td>+105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-50</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Humidity (non condensing)</td>
<td>---</td>
<td>95</td>
<td>% rel. H</td>
</tr>
<tr>
<td>Lead Temperature (1.5mm from case for 10Sec.)</td>
<td>---</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

EMC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standards & Level</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMI</td>
<td></td>
<td>Class A</td>
</tr>
<tr>
<td>EN 55024</td>
<td>EN 61000-4-2 Ar ± 8kV, Contact ± 6kV</td>
<td>A</td>
</tr>
<tr>
<td>Radiated immunity</td>
<td>EN 61000-4-3 10V/m</td>
<td>A</td>
</tr>
<tr>
<td>Fast transient &</td>
<td>EN 61000-4-4 ±2kV</td>
<td>A</td>
</tr>
<tr>
<td>Surge &</td>
<td>EN 61000-4-5 ±1kV</td>
<td>A</td>
</tr>
<tr>
<td>Conducted immunity</td>
<td>EN 61000-4-6 10Vrms</td>
<td>A</td>
</tr>
<tr>
<td>PFMF</td>
<td>EN 61000-4-8 100A/m, 1000A/m(1sec.)</td>
<td>A</td>
</tr>
</tbody>
</table>

E-mail:sales@minmax.com.tw Tel: 886-6-2923150
Power Derating Curve

![Power Derating Curve Graph]

Notes
1. Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
3. We recommend to protect the converter by a slow blow fuse in the input supply line.
4. Other input and output voltage may be available, please contact factory.
5. To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required. Suggested capacitor: 220μF/100V.
6. Specifications are subject to change without notice.

Package Specifications

Mechanical Dimensions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Single Output</th>
<th>Dual Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-Vin</td>
<td>-Vin</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>Common</td>
</tr>
<tr>
<td>9</td>
<td>+Vout</td>
<td>+Vout</td>
</tr>
<tr>
<td>10</td>
<td>-Vout</td>
<td>-Vout</td>
</tr>
<tr>
<td>16</td>
<td>+Vin</td>
<td>+Vin</td>
</tr>
</tbody>
</table>

NC: No Connection

► All dimensions in mm (inches)
► Tolerance: X.X±0.5 (X.X±0.02)
X.XX±0.25 (X.XXX±0.01)
► Pin diameter 0.5 ±0.05 (0.02±0.002)

Physical Characteristics

- **Case Size**: 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)
- **Case Material**: Aluminium Alloy, Black Anodized Coating
- **Pin Material**: Tinned Copper
- **Weight**: 6.1g

E-mail: sales@minmax.com.tw Tel: 886-6-2923150
2018/08/31 REV:3 Page 3 of 4
Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47μF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit; it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 2.2μF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μF capacitors at the output.

Maximum Capacitive Load

The MDWI06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Position of air velocity probe and thermocouple

- 50mm / 2in
- 15mm / 0.6in

Air Flow

DUT