

MCWI02 Series EC Note

DC-DC CONVERTER 2W, SIP Package

Features

- ► Industrial Standard SIP-8 Package
- ► Ultra-wide 4 : 1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +90°C
- ► No Min. Load Requirement
- ► Overload and Short Circuit Protection
- ➤ Remote On/Off Control
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MCWI02 series is a range of isolated 2W DC-DC converter modules featuring fully regulated output and ultra-wide 4:1 input voltage ranges. The product comes in a SIP-8 package with a very small footprint occupying only 2.0 cm² (0.32 square in.) on the PCB.

An excellent efficiency allows an operating temperature range up to 90°C at full load. Further features include remote On/Off control, short circuit and over load protection.

The very compact dimensions of these DC-DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Table of contents

Model Selection GuideP2	Recommended Pad Layout for Single & Dual Output ConverterP	25
Input SpecificationsP2	Test SetupP	26
Remote On/Off ControlP2	Technical NotesP	26
Output SpecificationsP3	Remote On/Off ImplementationP	27
General SpecificationsP3	Packaging Information for TubeP	27
EMC SpecificationsP3	Wave Soldering ConsiderationsP	28
Environmental SpecificationsP3	Hand Welding ParameterP	28
Characteristic CurvesP4		
Package SpecificationsP25	MTBF and ReliabilityP	29 [']

Date:2023-11-15 Rev:4

Model	Input	Output	Output	Inp	out	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Curr	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MCWI02-12S033		3.3	500	183		1000	75
MCWI02-12S05		5	400	208		1000	80
MCWI02-12S12	12	12	167	204		170	82
MCWI02-12S15		15	134	204	60	110	82
MCWI02-12D05	(4.5 ~ 18)	±5	±200	208		470#	80
MCWI02-12D12		±12	±83	202		100#	82
MCWI02-12D15		±15	±67	204		47#	82
ICWI02-24S033		3.3	500	92		1000 1000	75
MCWI02-24S05		5	400	104			80
MCWI02-24S12	24	12	167	102	30	170	82
MCWI02-24S15		15	134	102		110	82
MCWI02-24D05	(9 ~ 36)	±5	±200	104		470#	80
MCWI02-24D12		±12	±83	101		100#	82
MCWI02-24D15		±15	±67	102		47#	82
MCWI02-48S033		3.3	500	46		1000	74
MCWI02-48S05		5	400	52		1000	80
MCWI02-48S12	48	12	167	51		170	82
MCWI02-48S15		15	134	51	20	110	82
MCWI02-48D05	(18 ~ 75)	±5	±200	52	1	470#	80
MCWI02-48D12		±12	±83	51		100#	82
MCWI02-48D15		±15	±67	51		47#	82

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
nput Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
Start-Up Threshold Voltage	12V Input Models	3	4	4.5	VDC
	24V Input Models	4.5	6	9	
	48V Input Models	8.5	12	18	
	12V Input Models			4	
Jnder Voltage Shutdown	24V Input Models			8	
	48V Input Models			16	
Short Circuit Input Power	All Models			1500	mW
nput Filter			Internal	nal Capacitor	

Remote On/Off Control							
Parameter	Conditions Min. Typ. Max. Unit						
Converter On	Under 0.6 VDC or Open Circuit						
Converter Off	4.7 to 15 VDC						
Standby Input Current	Nominal Vin 3 mA						

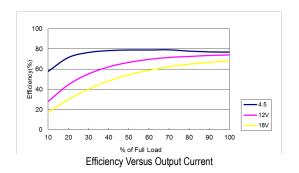
Date:2023-11-15 Rev:4

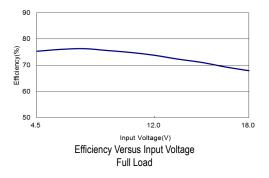
Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.3	±0.5	%
Load Regulation	Io=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20MHz Bandwidth			100	mV _{P-P}
Transient Recovery Time	OFFI/ Load Char Charas		300	500	μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	110	140		%
Output Short Circuit	Continuous, Automatic Recovery				

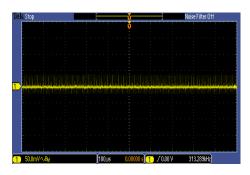
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	1500			VDC
	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		250	500	pF
Switching Frequency			300		kHz
MTBF (Calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,430,000			Hours
Safety Approvals	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)				
	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)				

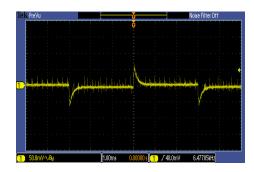
EMC Specifications						
Parameter		Standards & Level				
E141	Conduction	EN 55020	With external components	Class A		
EMI ₍₅₎	Radiation	EN 55032	With external components	Class A		
	EN 55035					
	ESD	EN 61000-4-2 Air \pm 8kV , Contact \pm 4kV		А		
	Radiated immunity	EN 61000-4-3 10V/m		Α		
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		А		
	Surge	EN 61000-4-5 ±1kV		А		
	Conducted immunity	EN 61000-4-6 10Vrms		A		
	PFMF	EN 61000-4-8 100A/m		Α		

Environmental Specifications			
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+90	°C
Case Temperature		+105	°C
Storage Temperature Range	-55	+125	°C
Humidity (non condensing)		95	% rel. H
Lead Temperature (1.5mm from case for 10Sec.)		260	°C

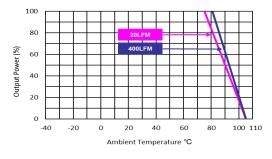

Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- $2\qquad \text{Transient recovery time is measured to within 1\% error band for a step change in output load of 75\% to 100\%}.$
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- ${\it 4} \qquad {\it Other input and output voltage may be available, please contact MINMAX.}$
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.

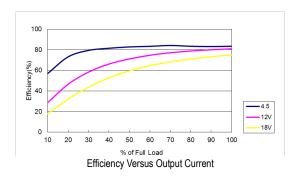

Date:2023-11-15 Rev:4 MCWI02 Series – EC Notes 3

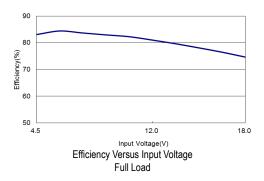

All test conditions are at 25°C $\,$ The figures are identical for MCWI02-12S033 $\,$

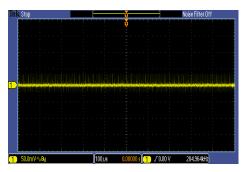
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

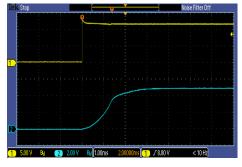
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

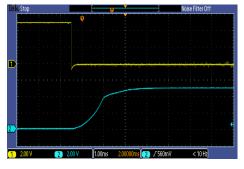

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

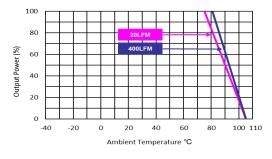



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

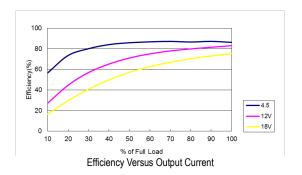
All test conditions are at 25°C The figures are identical for MCWI02-12S05

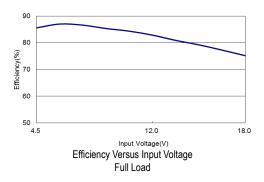


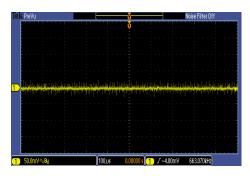

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

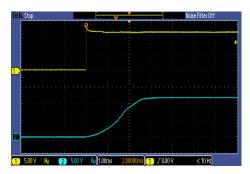
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

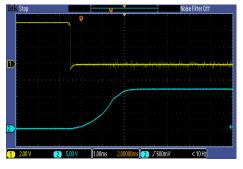

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

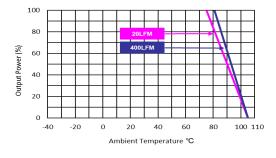



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

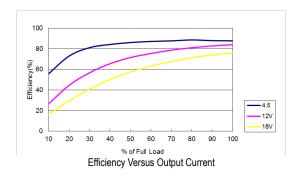

All test conditions are at 25°C The figures are identical for MCWI02-12S12

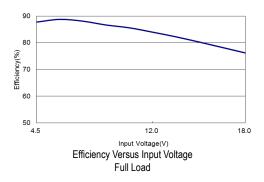


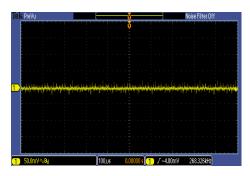

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

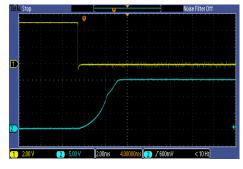
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

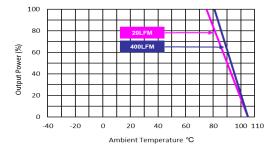

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load



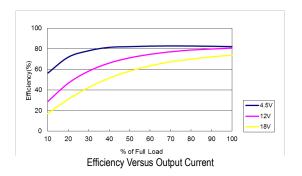

Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

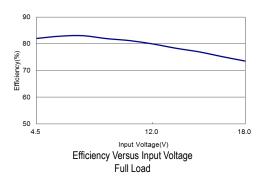
All test conditions are at 25°C The figures are identical for MCWI02-12S15

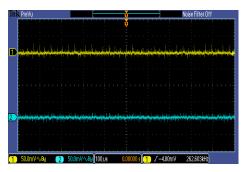

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

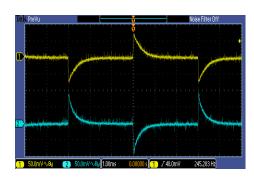

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

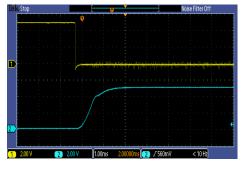
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

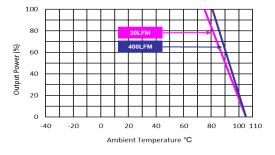

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load



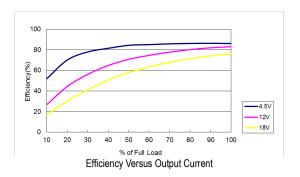

Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

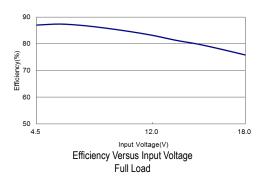

All test conditions are at 25°C The figures are identical for MCWI02-12D05

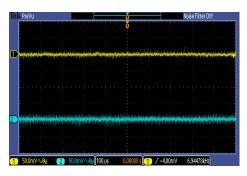

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

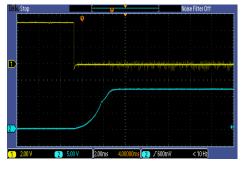
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

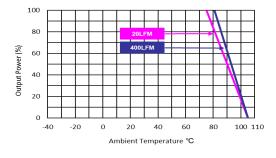

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



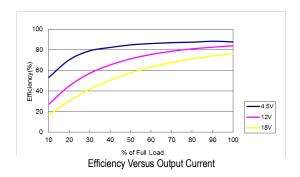

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

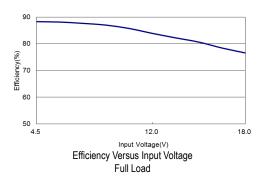

All test conditions are at 25°C The figures are identical for MCWI02-12D12

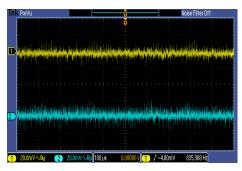

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

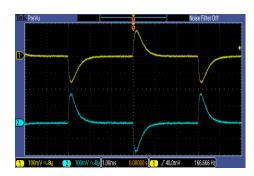

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

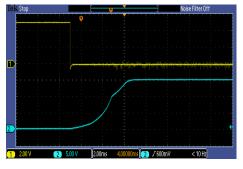
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

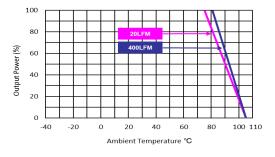

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load



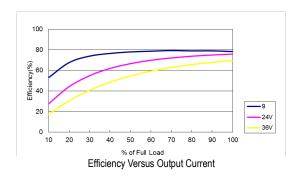

Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

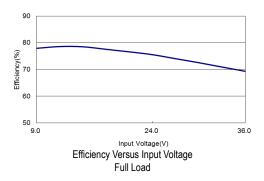

All test conditions are at 25°C The figures are identical for MCWI02-12D15

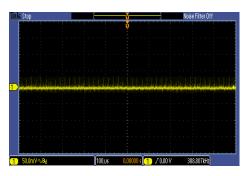

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

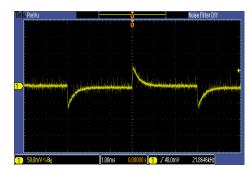

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

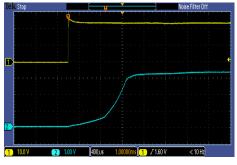
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

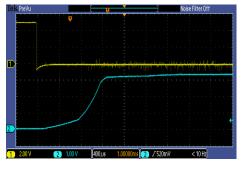

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

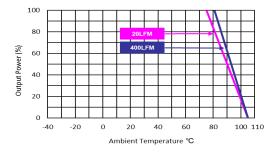



Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$


All test conditions are at 25°C $\,$ The figures are identical for MCWI02-24S033 $\,$

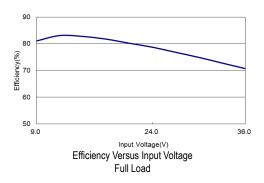


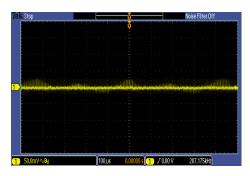

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

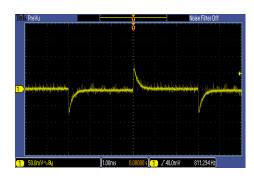

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

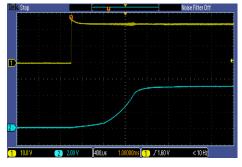
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

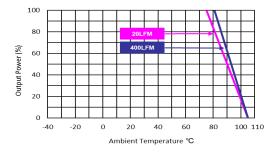



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

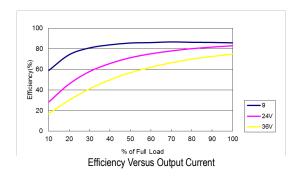

All test conditions are at 25°C The figures are identical for MCWI02-24S05

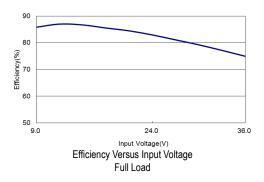


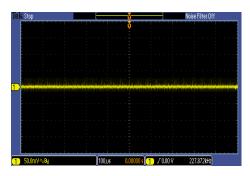
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

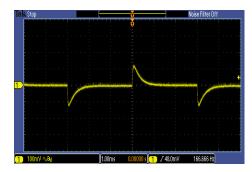

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

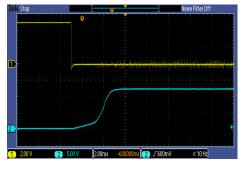
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

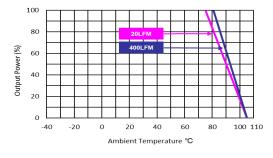

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



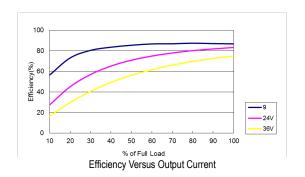

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

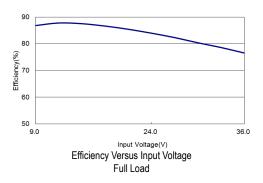

All test conditions are at 25°C The figures are identical for MCWI02-24S12

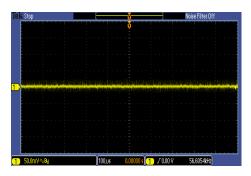

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

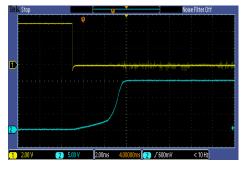

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load




Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

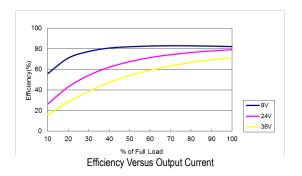
All test conditions are at 25°C The figures are identical for MCWI02-24S15

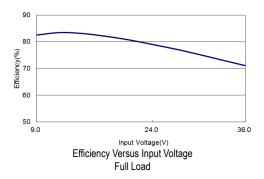


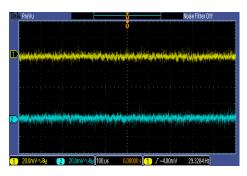

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

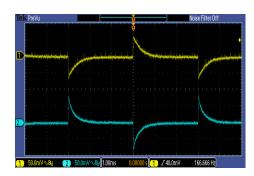
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

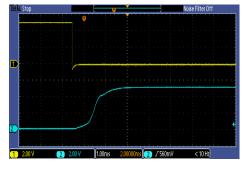
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \, ; \, \text{Full Load}$

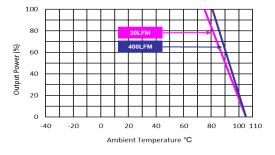

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



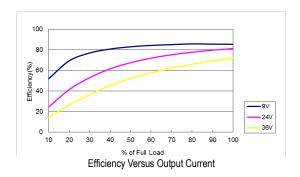

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

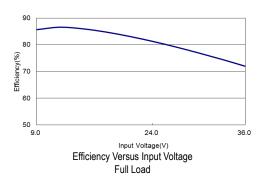

All test conditions are at 25°C The figures are identical for MCWI02-24D05

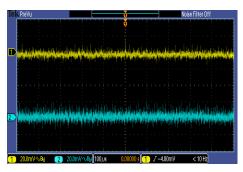

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

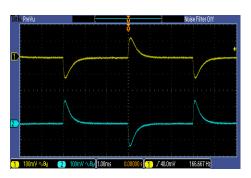

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

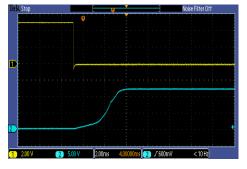
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

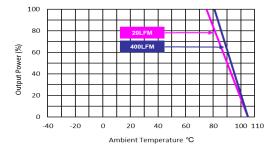

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load



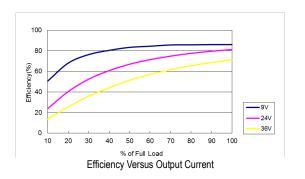

Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

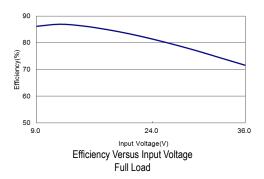

All test conditions are at 25°C The figures are identical for MCWI02-24D12

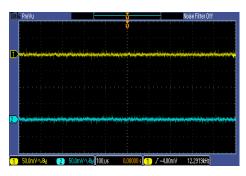

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

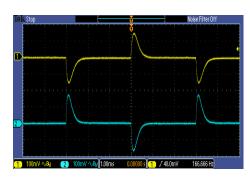

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

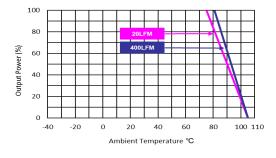

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load



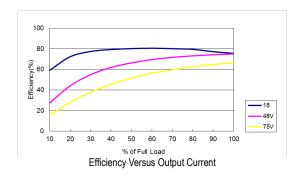

Derating Output Current Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

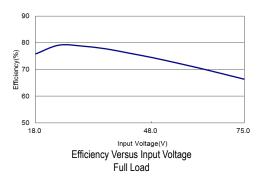

All test conditions are at 25°C The figures are identical for MCWI02-24D15

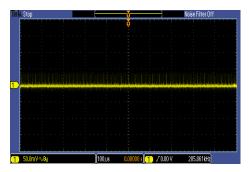
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

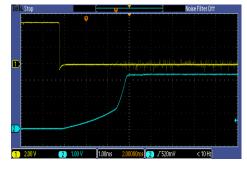
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

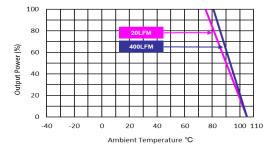

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



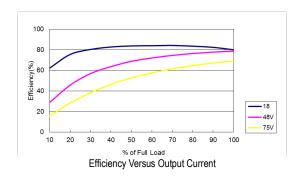

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

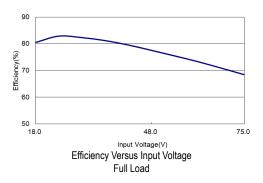
All test conditions are at 25°C $\,$ The figures are identical for MCWI02-48S033 $\,$

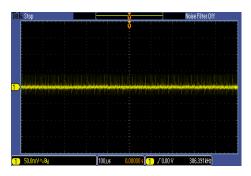

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

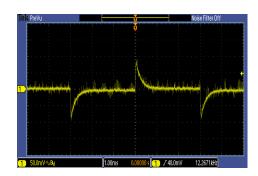

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

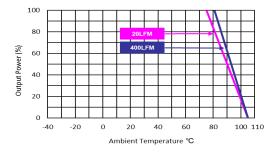

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



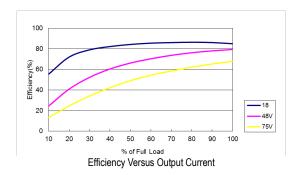

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

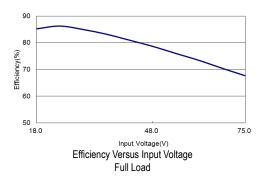

All test conditions are at 25°C The figures are identical for MCWI02-48S05

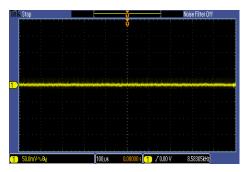
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

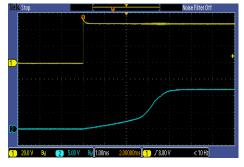
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

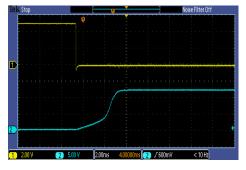

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

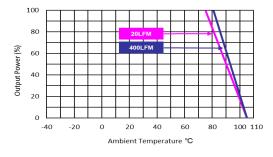



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

All test conditions are at 25°C The figures are identical for MCWI02-48S12

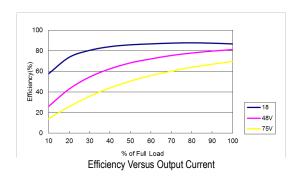


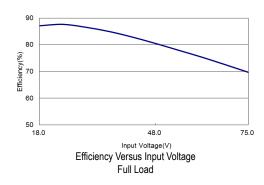

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

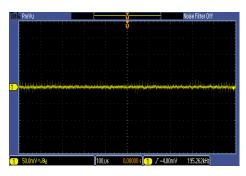

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

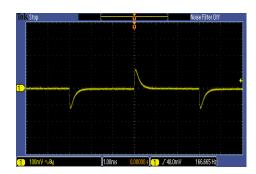
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

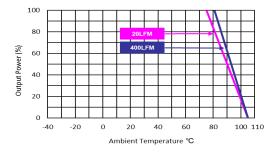



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

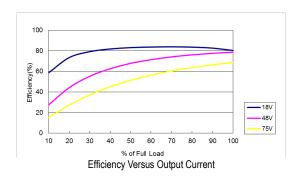

www.minmaxpower.com

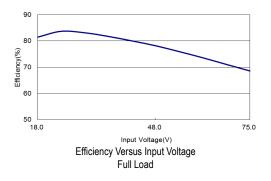

All test conditions are at 25°C The figures are identical for MCWI02-48S15

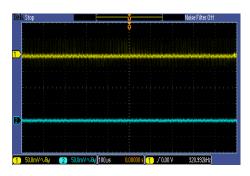

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

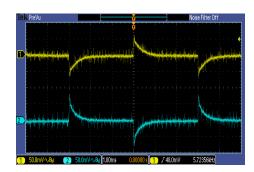

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

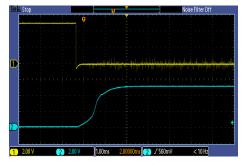
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

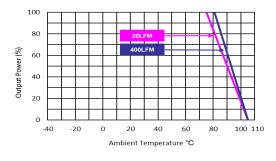

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



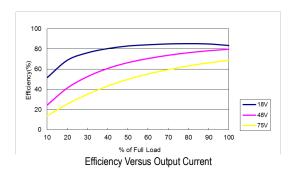

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

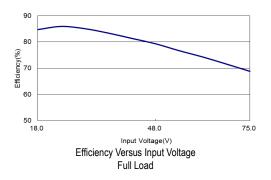

All test conditions are at 25°C The figures are identical for MCWI02-48D05

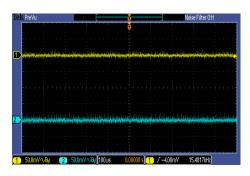

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

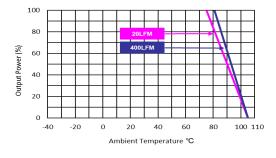

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$



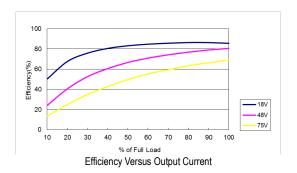

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

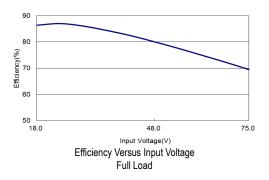

All test conditions are at 25°C The figures are identical for MCWI02-48D12

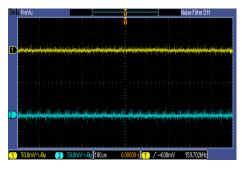
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

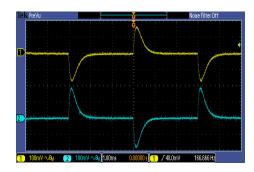

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

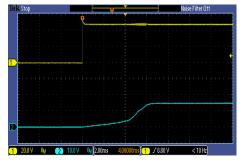
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

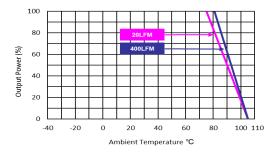



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MCWI02-48D15



Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

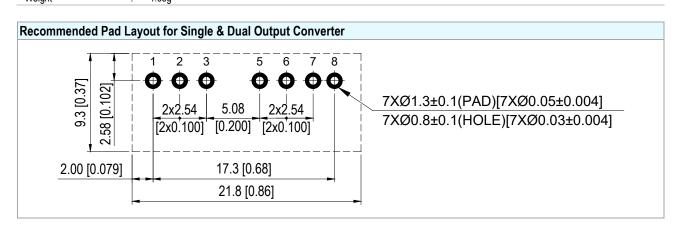

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

Package Specifications Mechanical Dimensions 21.8 [0.86] 11.2 [0.44] 0.5 [0.02] 0.5 [0.02] 2.00 2x2.54 5.08 [0.079] [2x0.100] [0.200] [3x0.100] 20.8 [0.82] **Bottom View** 0.5 [0.02]

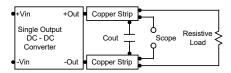

Pin Con	Pin Connections					
Pin	Single Output	Dual Output				
1	-Vin	-Vin				
2	+Vin	+Vin				
3	Remote On/Off	Remote On/Off				
5	NC	NC				
6	+Vout	+Vout				
7	-Vout	Common				
8	NC	-Vout				

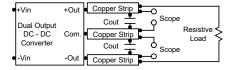
NC: No Connection

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01)
- ► Pins ±0.1(±0.004)

Physical Characteristics

Case Size 21.8x9.3x11.2 mm (0.86x0.37x0.44 inches) Case Material Plastic resin (flammability to UL 94V-0 rated) Pin Material Alloy 42 Weight 4.66g





Test Setup

Peak-to-Peak Output Noise Measurement Test

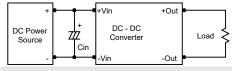
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

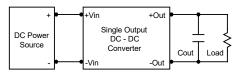
Only one type of remote ON/OFF control is available for MCWI02. The module will turn on during the ON/OFF pin open or high impedance between ON/OFF pin and -Vin pin. The module will turn off if the ON/OFF pin is applied with a current of 2~4mA.

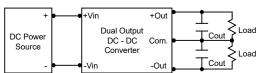
Maximum Capacitive Load


The MCWI02 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

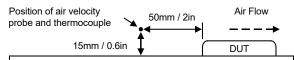
Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

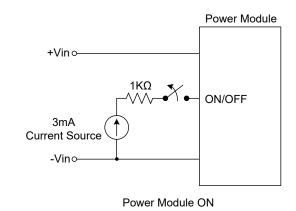

Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $4.7\mu\text{F}$ for the 12V input devices and a $2.2\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

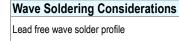

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

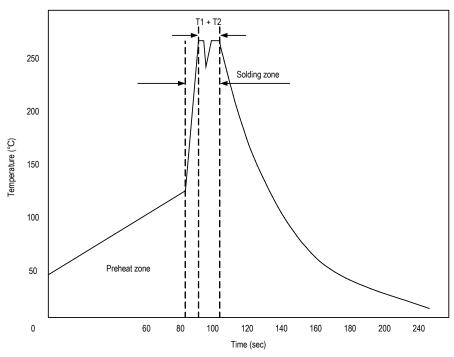
Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Remote On/Off Implementation

Only one type of remote ON/OFF control is available for MCWI02. The module will turn on during the ON/OFF pin open or high impedance between ON/OFF pin and -Vin pin. The module will turn off if the ON/OFF pin is applied with a current of 2~4mA.





Power Module OFF

Tube Plug **Total Plug **Tot

Zone	Reference Parameter		
Preheat	Rise temp. speed : 3°C/sec max.		
zone	Preheat temp.: 100~130°C		
Actual	Peak temp. : 250~260°C		
heating	Peak time(T1+T2): 4~6 sec		

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure WI 02 S 033 М C 12 Package Type Ultra-wide 4:1 Output Power Input Voltage Range **Output Quantity** Output Voltage VDC SIP-8 VDC Input Voltage Range 2 Watt 12: 4.5 18 S: Single 033: 3.3 24: 9 36 VDC D: Dual 05: 5 VDC 75 VDC VDC 48: 18 12: 12 VDC 15:

MTBF and Reliability

The MTBF of MCWI02 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MCWI02-12S033	5,490,000	
MCWI02-12S05	4,950,000	
MCWI02-12S12	5,860,000	
MCWI02-12S15	5,350,000	
MCWI02-12D05	3,990,000	
MCWI02-12D12	4,200,000	
MCWI02-12D15	3,430,000	
MCWI02-24S033	5,570,000	
MCWI02-24S05	5,060,000	
MCWI02-24S12	5,940,000	
MCWI02-24S15	5,410,000	Hours
MCWI02-24D05	4,030,000	
MCWI02-24D12	4,240,000	
MCWI02-24D15	3,460,000	
MCWI02-48S033	5,390,000	
MCWI02-48S05	5,010,000	
MCWI02-48S12	5,940,000	
MCWI02-48S15	5,410,000	
MCWI02-48D05	4,030,000	
MCWI02-48D12	4,240,000	
MCWI02-48D15	3,460,000	