

MKA10C Series

DC-DC Power Module 10W

Features

- ► Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- ► 80-160VDC Wide Input Voltage Range
- ► Fully Regulated Output Voltage
- ► High Efficiency up to 85%
- ►I/O Isolation 3000VAC with Reinforced Insulation, rated for 1000Vrms Working Voltage
- ▶ Operating Ambient Temp. Range -40°C to +87°C
- ► No Min. Load Requirement
- ► Very Low No Load Power Consumption
- ► Under-voltage, Overload and Short Circuit Protection
- ► Remote On/Off Control
- ► EMI Emission EN 55032 Class A Approved
- ► EMC Immunity EN 61000-4-2,3,4,5,6,8 Approved
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ➤ Communications equipment

Product Overview

The MINMAX MKA10C series is the latest 10Watt isolated DC-DC power module generation with 9 fixed output voltage models:5 / 5.1 / 12 / 15 / 24 / 48 / ±12 / ±15 / ±24VDC. The wide input range from 80VDC to 160VDC is specifically for electricity and renewable energy field applications within the usage of terminal strip connectors in chassis and DIN-Rail package.

The key performances are: 3000VAC I/O Isolation, reinforced insulation, high efficiency, wide operating ambient temp. range -40°C to +87°C, no min. load, low no-load power consumption, remote on/off, built-in EMI emission EN 55032 Class A, UVLO, and SCP. The MKA10C series certificates in safety UL/cUL/IEC/EN 62368-1 with CB report and CE marking and offers a solution for eliminating components of a power board.

Table of contents

Model Selection Guide	. P2
Input Specifications	. P2
Remote On/Off Control	P2
Output Specifications	. P3
General Specifications	. P3
EMC Specifications	. P3
Environmental Specifications	. P3
Characteristic Curves	. P4

Package Specifications	P13
Test Setup	P14
Technical Notes	P14
Remote On/Off Implementation	P15
Packaging Information	P15
Part Number Structure	P16
MTBF and Reliability	P16

Electric Characteristic Note

Model Selection Guid	le						
Model	Input	Output	Output	Input Current		Max. capacitive	Efficiency
Number	Voltage	Voltage	Current			Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MKA10-110S05C		5	2000	110		1000	83
MKA10-110S051C		5.1	2000	112		1000	83
MKA10-110S12C		12	833	107		470	85
MKA10-110S15C		15	666	107		330	85
MKA10-110S24C	110	24	416	107	20	150	85
MKA10-110S48C	(80 ~ 160)	48	208	109		68	83
MKA10-110D12C		±12	±416	107		220#	85
MKA10-110D15C		±15	±333	107		150#	85
MKA10-110D24C		±24	±208	108		68#	84

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)		-0.7		170	
Start-Up Threshold Voltage				80	VDC
Under Voltage Shutdown			78		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		ms
Input Filter	All Models	Internal Pi Type			

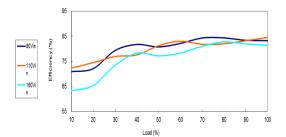
Remote On/Off Control							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0~1.2V or Short Circuit (Pin 1 and Pin 2)						
Control Input Current (on)	Vctrl = 5V			500	μA		
Control Input Current (off)	Vctrl = 0V			-500	μA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		2.5		mA		

Output Specifications						
Parameter	Cor	Conditions / Model		Тур.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual Out	put, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min.	to Max. @Full Load			±0.5	%
Load Regulation	lo	lo=0% to 100%			±0.5	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load				±5.0	%
Minimum Load	No minimum Load Requirement					
Dinnle 9 Naine	0-20 MHz Bandwidth	24V & ±24V & 48V Output Models		180		mV _{P-P}
Ripple & Noise	U-ZU IVITIZ DATIUWIUITI	Other Output Models		90		mV _{P-P}
Transient Recovery Time	250/ 1	and Ctan Change			500	μsec
Transient Response Deviation	25% Load Step Change			±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection	Hiccup			150		%
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.7Hz typ.)					

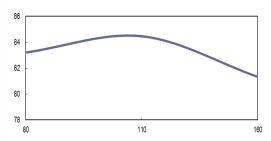
www.minmax.com.tw Rev:8 2022/04/27 Page 2 of 17

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O location Voltage	60 Seconds	3000			VAC	
I/O Isolation Voltage	Reinforced insulation, rated for 1000Vrms working voltage	3000			VAC	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100kHz, 1V		2200		pF	
Switching Frequency			275		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,746,600			Hours	
fety Approvals UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 & 60950-1(CB report)						

EMC Specifications						
Parameter		Standards & Level		Performance		
EMI	Conduction	EN 55032	Without external components	Class A		
EIVII	Radiation	EN 33032	Without external components	Class A		
	EN 55035	EN 55035				
	ESD	Direct discharge	Indirect discharge HCP & VCP	A		
	ESD	EN 61000-4-2 Air ± 8kV	Contact ± 6kV			
EMS	Radiated immunity	EN 61000-4-3 10V/m		Α		
=IVIS	Fast transient	ient EN 61000-4-4 ±2kV		Α		
	Surge	EN 61000-4-5 ±2kV		Α		
	Conducted immunity	EN 61000-4-6 10Vrms		Α		
	PFMF	EN 6100	00-4-8 100A/m	Α		

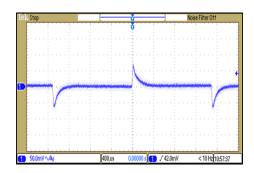

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+87	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Altitude		5000	m		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

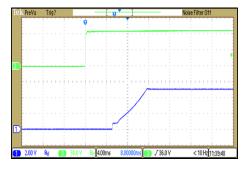
Notes

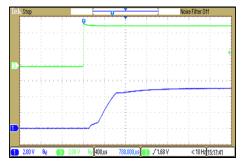

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.

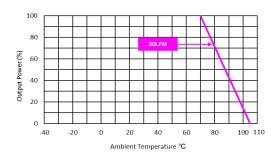
www.minmax.com.tw Rev:8 2022/04/27 Page 3 of 17

All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S05C $\,$

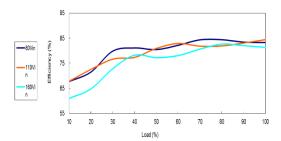

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

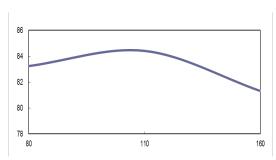

Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

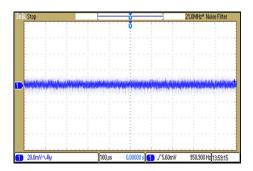
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

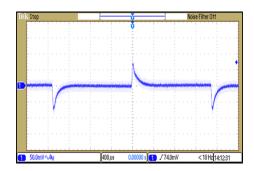


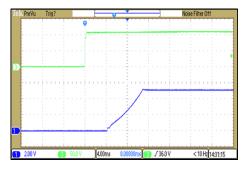
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \; ; \; \text{Full Load}$

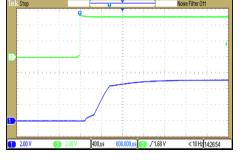


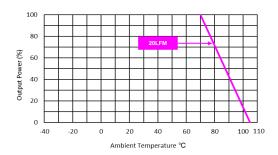
Derating Output Power Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S051C $\,$

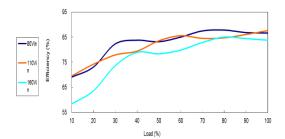

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

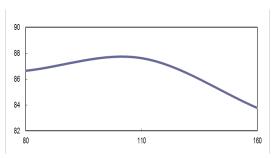

Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in \, nom}$

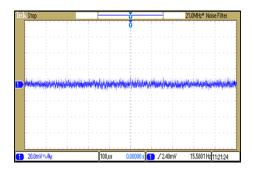
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

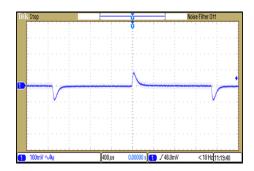


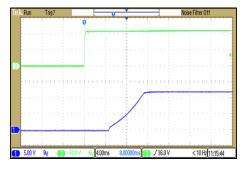
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \ ; \ \text{Full Load}$

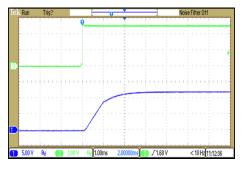


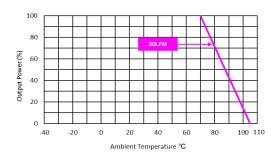
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S12C $\,$

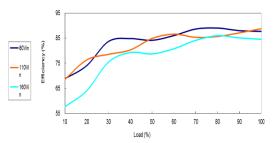

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

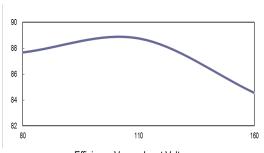

Typical Output Ripple and Noise $V_{in}\text{=}V_{in}\,\text{nom}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

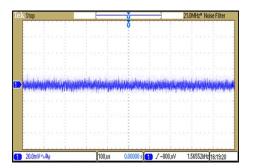
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

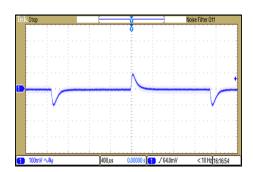


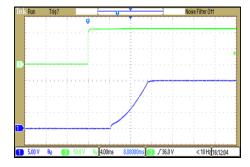
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \ ; \ \text{Full Load}$

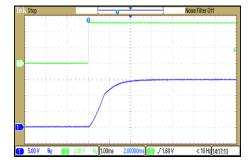


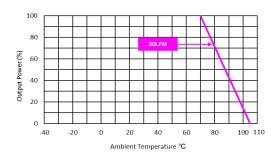
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S15C $\,$


Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

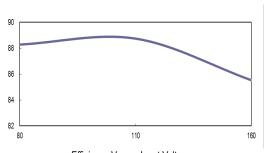

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

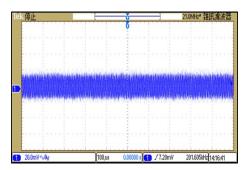
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}}$; Full Load

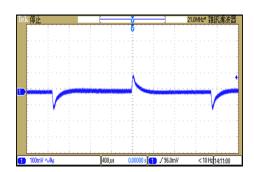


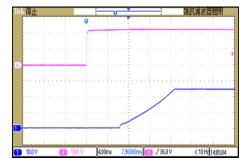
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

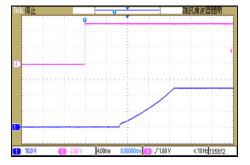


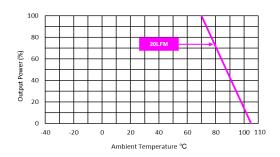
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S24C $\,$

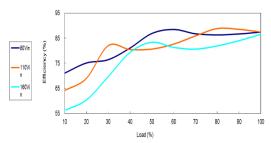

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

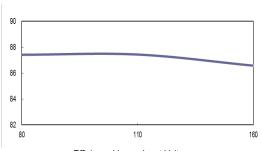

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

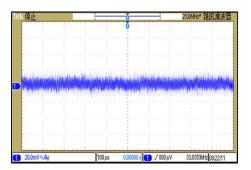
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}}$; Full Load

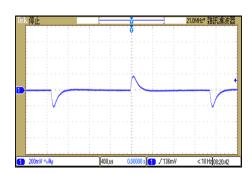


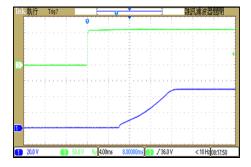
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

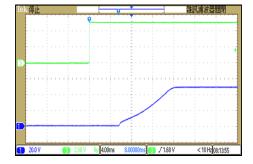


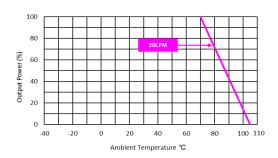
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110S48C $\,$

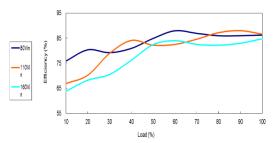

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

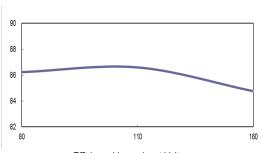

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

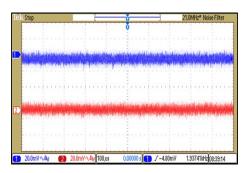
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \text{ ; Full Load}$

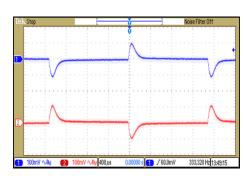


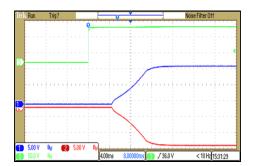
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

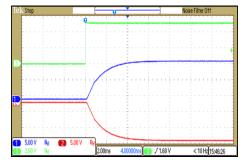


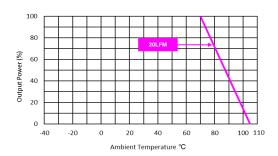
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110D12C $\,$

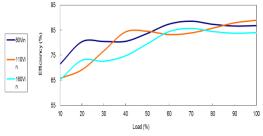

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

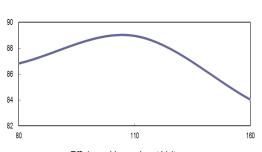

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

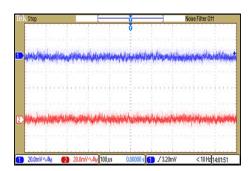
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \text{ ; Full Load}$

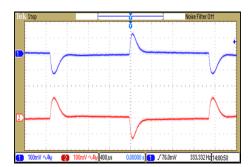


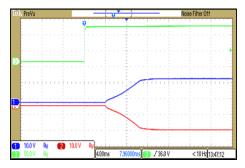
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

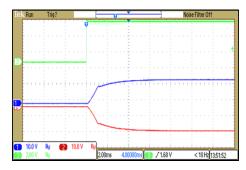


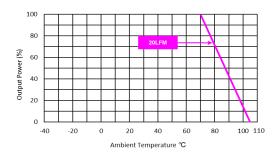
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKA10-110D15C $\,$

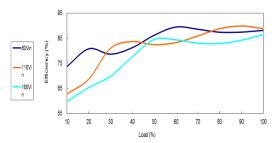

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

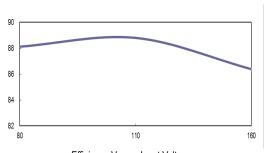

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; V_{in}=V_{in nom}

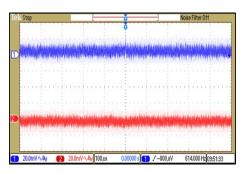
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \text{Full Load}$

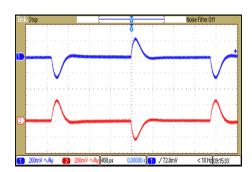


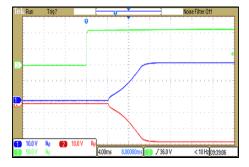
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

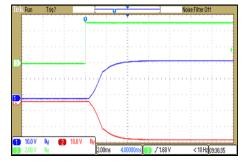


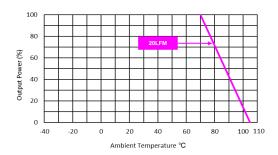
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MKA10-110D24C


Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in}=V_{in nom}

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \text{ ; Full Load}$

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

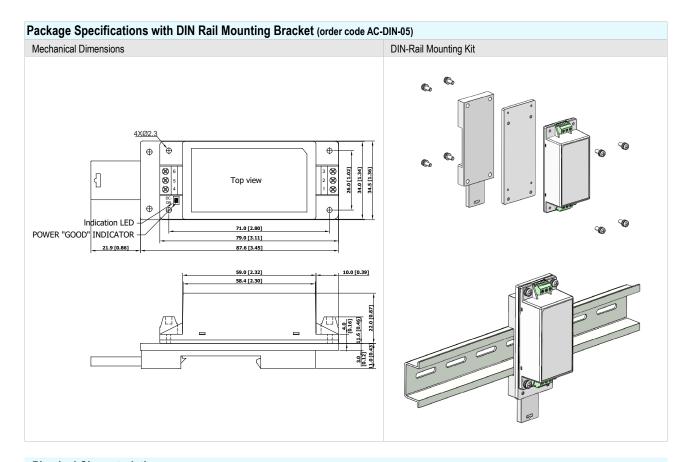
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Package Specifications Mechanical Dimensions 4XØ2.3 ⊗ ⊗ ⊗ 26.0 [1.02] 34.0 [1.34] Indication LED Top view POWER "GOOD" INDICATOR 71.0 [2.80] 79.0 [3.11] 59.0 [2.32] 10.0 [0.39] 4.0 [0.16] Note: Screw type Terminal: Wires 1.5mm² max. Recommended Terminal Screw tightening torque: 0.2Nm (1.7lb.in.) max.

Pin Connections					
Pin	Single Output	Dual Output			
1	Remote On/Off	Remote On/Off			
2	-Vin	-Vin			
3	+Vin	+Vin			
4	-Vout	-Vout			
5	NC	Common			
6	+Vout	+Vout			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

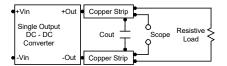

X.XX±0.25 (X.XXX±0.01)

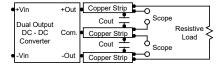
Physical Characteristics

Case Size : 79.0x34.0x22.0mm (3.11x1.10x0.87 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 69g

www.minmax.com.tw Rev:8 2022/04/27 Page 13 of 17


Physical Characteristics


•		
Case Size	:	79.0x34.0x22.0mm (3.11x1.10x0.87 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Weight	:	108.76g

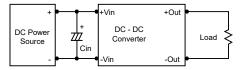
Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

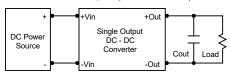
Technical Notes

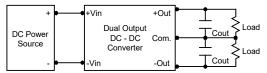
Remote On/Off


Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -500µA.

Overload Protection

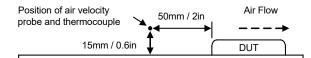
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 1μ F for the 110V input devices, capacitor mounted close to the power module helps ensure stability of the unit.

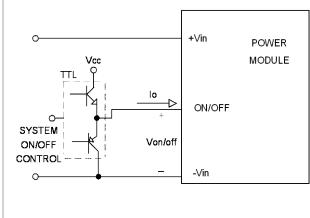
Output Ripple Reduction

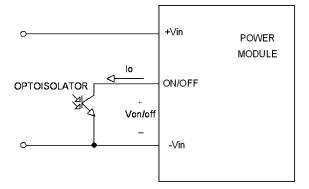
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.


Maximum Capacitive Load

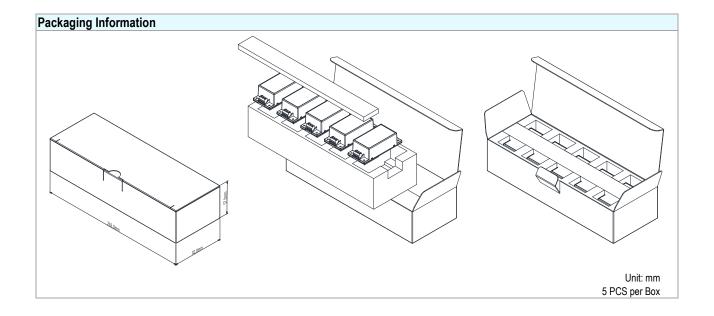
The MKA10C series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

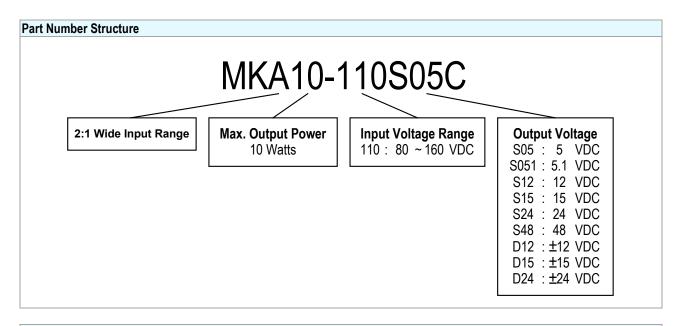
Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C.


The derating curves are determined from measurements obtained in a test setup.

Remote On/Off Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to -Vin. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.



Level Control Using TTL Output

Isolated-Closure Remote ON/OFF

Page 16 of 17

MTBF and Reliability

The MTBF of MKA10C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKA10-110S05C	3,996,354	
MKA10-110S051C	3,989,729	
MKA10-110S12C	4,202,380	
MKA10-110S15C	4,178,463	
MKA10-110S24C	4,209,566	Hours
MKA10-110S48C	3,746,600	
MKA10-110D12C	4,103,375	
MKA10-110D15C	4,038,570	
MKA10-110D24C	3,898,488	