

MRZI100 Series EC Note

DC-DC CONVERTER 100W, Reinforced Insulation, Railway Certified

Features

- Industrial Standard Quarter Brick Package
- Ultra-wide Input Range 36-160VDC
- I/O Isolation 2000VAC with Reinforced Insulation
- Excellent Efficiency up to 91.5%
- Operating Baseplate Temp. Range -40°C to +105°C
- No Min. Load Requirement
- Under-voltage, Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim, Output Sense
- Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- Railway EMC Standard EN 50121-3-2 Approved
- Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MRZI100 series is a new generation of high performance 100W DC-DC converters in quarter brick package designed specifically for railway applications with popular 36-160 VDC input ranges. MRZI100 is approved by railway industry standard EN 50155 and complies with EMC standard EN 50121-3-2.

Advanced circuit topology provides a very high efficiency up to 91.5% which allows baseplate temperature up to 105°C and very high I/O isolation up to 2000VAC with reinforced insulation which are designed to meet stringent requirements and harsh environment.

Further product features include under-voltage, overload/voltage/temp., short circuit protection, remote On/Off Control(positive/negative logic), output voltage trim, output sense and complies specifically fire protection test meets EN45545-2 to ensure safety during railway/railroad vehicle operation.

Table of contents

Model Selection Guide	P2 Recommended Pad Layout	P21
Input Specifications	P2 External Output Trimming	P22
Output Specifications	P2 Test Setup	P23
General Specifications	P2 Technical Notes	P23
Remote On/Off Control	P3 Railway EN 50155 Certified	P24
EMC Specifications	P3 Remote On/Off Implementation	P24
Environmental Specifications	P3 Packaging Information	P25
Characteristic Curves	P4 Wave Soldering Considerations	P26
Package Specifications	19 Hand Welding Parameter	P26
Heatsink	20 Part Number Structure	P27
PCB Installation of End Users	21 MTBF and Reliability	P27

Date:2023-02-23 Rev:12

Model Selection	Guide								
Model	Input	Output	Output	Output	Ing	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Power	Current	Cur	rent	Voltage	Load	(typ.)
	(Range) (9)			Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	W	A	mA(typ.)	mA(typ.)	VDC	μF	%
MRZI100-110S05		5	100	20	993.5	6	6.2	34000	91.5
MRZI100-110S12	110	12	100.8	8.4	1007	6	15	5830	91
MRZI100-110S15	110 (36 ~ 160)	15	100.5	6.7	1009	6	18	3670	90.5
MRZI100-110S24	(30~100)	24	100.8	4.2	1029	6	30	1460	89
MRZI100-110S54		54	99.9	1.85	1020	6	66	380	89

Input Specifications

input opcomoutiono				
Parameter	Min.	Тур.	Max.	Unit
Input Voltage Range (9)	36	110	160	
Input Surge Voltage (100ms. max)	-0.7		170	VDC
Start-up Threshold Voltage			36	VDC
Under Voltage Shutdown		35		
Input Filter		Internal (Capacitor	

Output Specifications

Parameter		Condition	าร	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%
Line Regulation		Vin=Min. to Max. @	D Full Load			±0.2	%
Load Regulation		Min. Load to F	ull Load			±0.3	%
Min. Load			No minimum Load	Requiremen	t		
		5V Output	Measured with a		100		mV _{P-P}
		12V, 15V Output	22µF/25V POLYMER		150		mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	24V Output	Measured with a 33µF/35V POLYMER		200		mV _{P-P}
		54V Output	Measured with a 1µF/100V MLCC		300		mV _{P-P}
Start Up Time (Power On)					50		ms
Transient Recovery Time					250		µsec
Transient Response Deviation		25% Load Step (Jnange (2)		±3	±5	%
Temperature Coefficient						±0.02	%/°C
	0(- (N		Other Models			±10	%
Trim Up / Down Range (8)	% of Nomin	al Output Voltage	54V Output			+5 / -15	%
Over Load Protection (7)		Current Limitation at 150% typ. of lout max., Hiccup					
Short Circuit Protection		Continu	ous, Automatic Recover	/ (Hiccup Mo	de 0.3Hz typ	o.)	

General Specifications

Ocheral Opechica									
Parameter		Conditions	Min.	Тур.	Max.	Unit			
I/O Isolation Voltage		Reinforced Insulation, Rated For 60 Seconds	2000			VAC			
solation Voltage		Dated Fee CO Consult	1500			VAC			
Isolation voltage	Output to case	Rated For 60 Seconds	500			VAC			
I/O Isolation Resistance)	500 VDC	10			GΩ			
I/O Isolation Capacitand	ce	100kHz, 1V		1500		pF			
Curitoping Froquency		Other Models		214		kHz			
Switching Frequency		54V Output		173		kHz			
MTBF(calculated)		MIL-HDBK-217F@25°C Full Load, Ground Benign	605,102			Hours			
Cafaty Standarda		EN 50155, II	EC 60571						
Safety Standards		UL/cUL 62368-1 recognition(UL	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1						

Date:2023-02-23 Rev:12

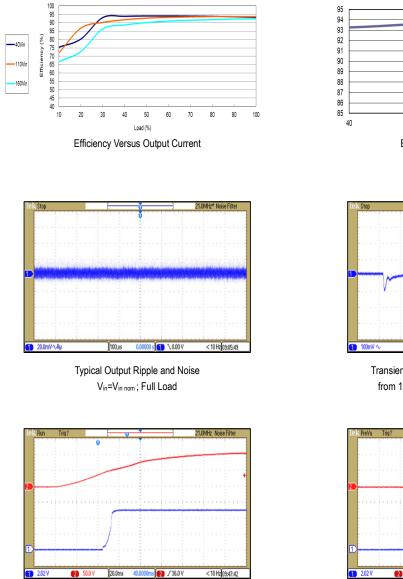
Remote On/	Off Control						
	Parameter		Conditions	Min.	Тур.	Max. Unit	
	the state and (Converter On	3.5V ~ 12V or 0	Open Circuit			
Positive logic (S	standard)	Converter Off	0V ~ 1.2V or S	hort Circuit			
Negetice legie (Ontion)	Converter On	0V ~ 1.2V or S	hort Circuit			
Negative logic (Option)	Converter Off 3.5V ~ 12V or Open Circuit		Open Circuit			
Description lesso		Converter On	Vctrl = 5.0V			0.5	mA
Positive logic	Control Input Current	Converter Off	Vctrl = 0V			-0.5	mA
N 0 1 1		Converter On	Vctrl = 0V			-0.5	mA
Negative logic	Control Input Current	Converter Off	Vctrl = 5.0V			0.5	mA
Control Commo	n		Referenced to N	egative Input			
Standby Input C	andby Input Current Nominal Vin		Nominal Vin		3		mA

EMC Specifications

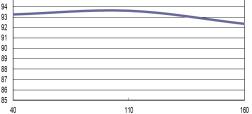
Parameter		Standards & Level		Performance
General		Compliance with EN 50121-3-2 Ra	ilway Applications	
EMI	Conduction	EN 55032/11	With external components	Class A
EMI (5)	Radiation	EN 55052/11	With external components	Class A
	EN 55024, EN 55035			
	ESD	Direct discharge	Indirect discharge HCP & VCP	
	ESD	EN 61000-4-2 air ± 8kV, Contact ± 6kV	Contact ± 6kV	A
ENC	Radiated immunity	EN 61000-4-3	A	
EMS (5)	Fast transient	EN 61000-4-4	A	
	Surge	EN 61000-4-5	5 ±1kV	A
	Conducted immunity	EN 61000-4-6	10Vrms	A
	PFMF	EN 61000-4-8	A	

Environmental Specifications

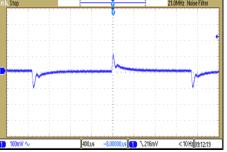
Parameter	Conditions	Min.	Тур.	Max.	Unit
Baseplate Temperature Range		-40		+105	°C
Over Temperature Protection (Baseplate)			+110		°C
Storage Temperature Range		-50		+125	°C
Cooling Test	Compliance to	IEC/EN60068-	2-1		
Dry Heat	Compliance to	IEC/EN60068-	2-2		
Damp Heat	Compliance to	EC/EN60068-2	2-30		
Vibration and Shock/Bump	Compliance t	o IEC/EN 6137	73		
Operating Humidity (non condensing)			5	95	% rel. H
Lead Temperature (1.5mm from case for 10Sec.)		-		260	°C

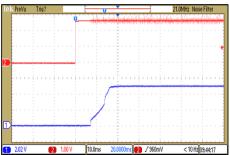

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Other input and output voltage may be available, please contact MINMAX.
- 4 It is necessary to parallel a capacitor across the input pins under normal operation. Minimum Capacitance: 150μF/ 250V KXJ.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 The hot-swap operation is extremely prohibited.
- 7 Over Current Protection (OCP) is built in and works over 130% of the rated current or higher. However, use in an over current situation over 4 seconds must be avoided whenever possible.
- 8 Do not exceed maximum power specification when adjusting output voltage. Please see the External Output Trimming table at page 6.
- 9 *Input Voltage Vin= 36VDC/1s for Start-up Operation and Vin= 40VDC for Continuos Operation
- 10 Specifications are subject to change without notice.



Characteristic Curves

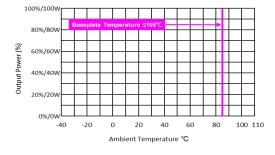

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S05 $\,$


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \text{=} V_{\text{in nom}} \text{ ; Full Load}$

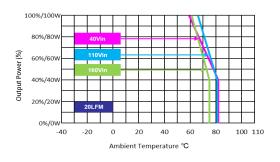
Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

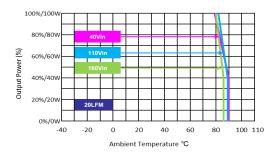
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} = V_{\text{in nom}}$; Full Load

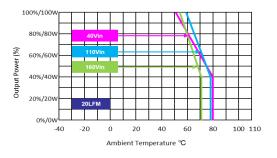

Date:2023-02-23 Rev:12

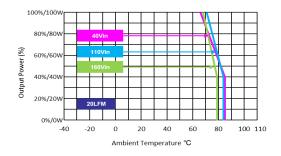
2.02



Characteristic Curves

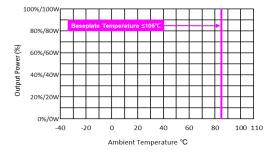

All test conditions are at 25°C The figures are identical for MRZI100-110S05 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

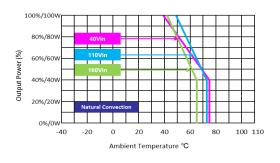

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

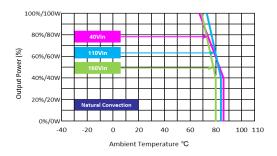
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

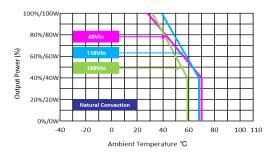


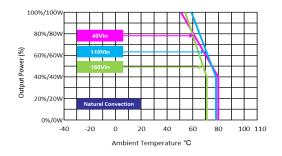
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



Characteristic Curves

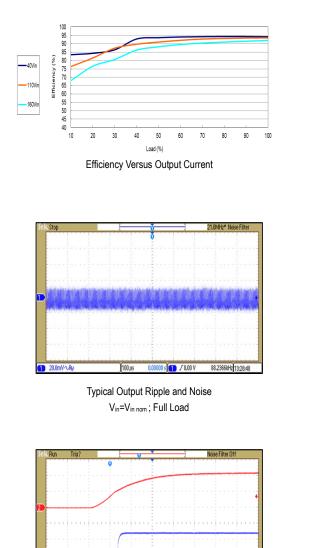

All test conditions are at 25°C The figures are identical for MRZI100-110S05 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

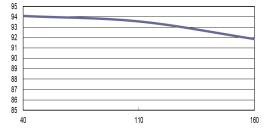

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

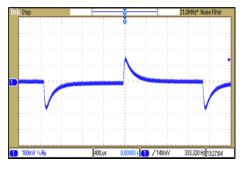
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

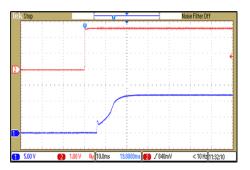


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



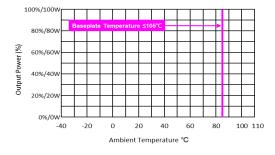
Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S12 $\,$

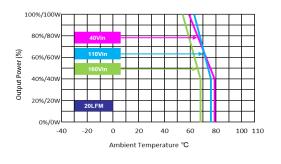


Efficiency Versus Input Voltage Full Load

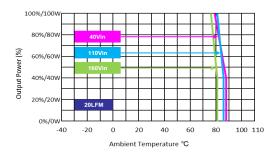
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \!=\! V_{\text{in nom}}$; Full Load

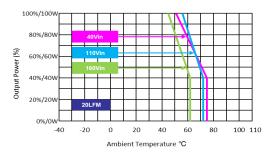
Date:2023-02-23 Rev:12

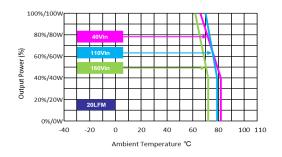

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S12 (continued)



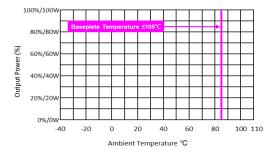
Derating Output Power Versus Ambient Temperature and Airflow



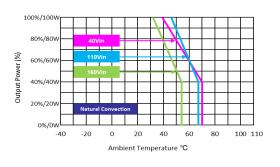

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

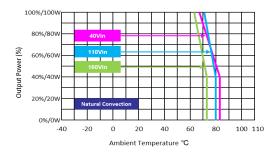
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



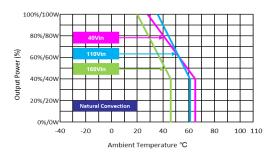
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

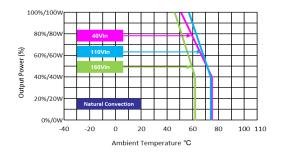

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S12 (continued)



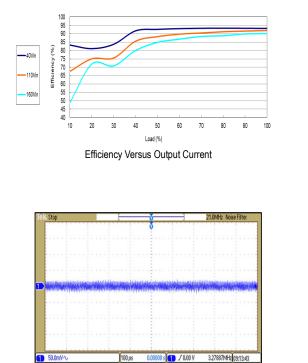
Derating Output Power Versus Ambient Temperature and Airflow


Vin=Vin nom


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

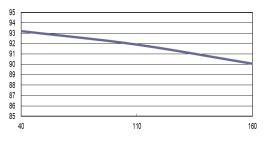
Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

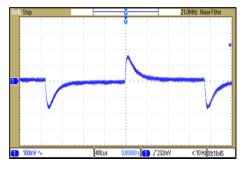
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

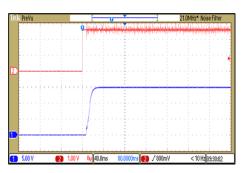


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Characteristic Curves

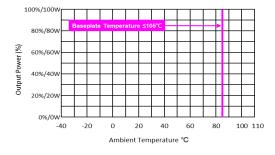

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S15 $\,$


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

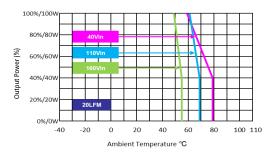

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} = V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

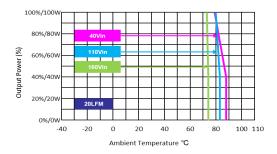
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$



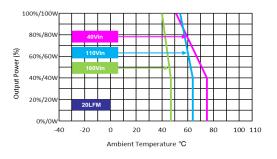
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \!=\! V_{\text{in nom}}$; Full Load

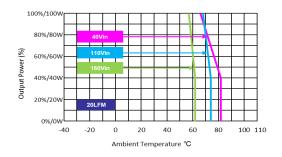

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S15 (continued)



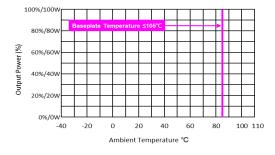
Derating Output Power Versus Ambient Temperature and Airflow



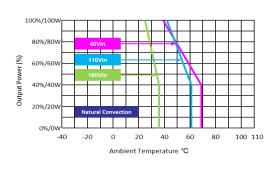

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

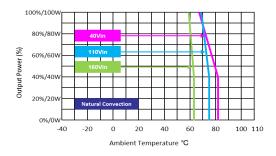
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



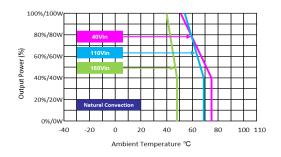
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



Characteristic Curves

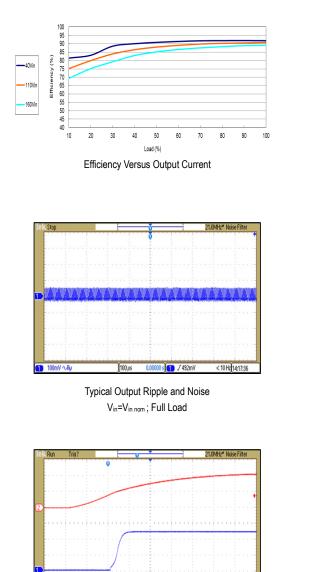

All test conditions are at 25°C The figures are identical for MRZI100-110S15 (continued)

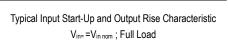

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

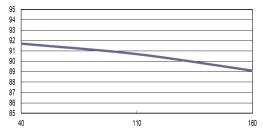
Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

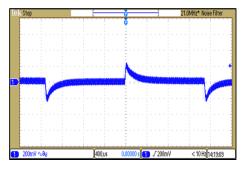
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



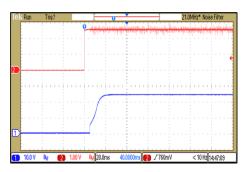

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S24 $\,$

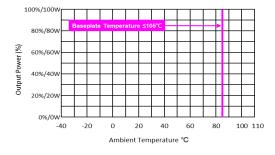


< 10 Hz 14:26:24

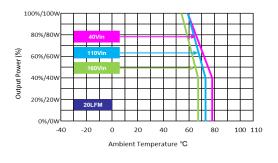

🚹 10.0 V 🗛 💋 50.0 V 🗛 20.0ms 40.0000ms 🛃 🖍 38.0 V

Efficiency Versus Input Voltage Full Load

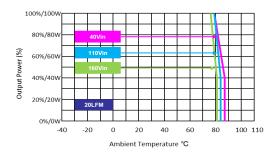
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \!=\! V_{\text{in nom}}$; Full Load

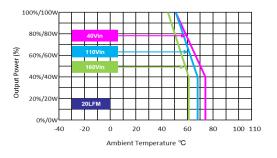
Date:2023-02-23 Rev:12

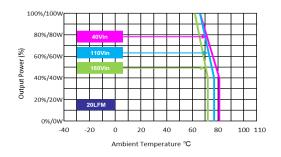

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S24 (continued)



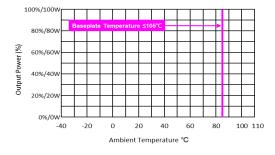
Derating Output Power Versus Ambient Temperature and Airflow



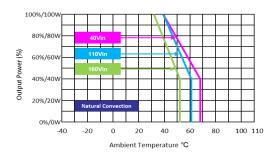

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

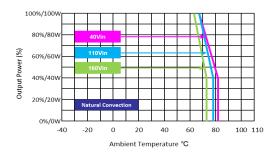
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)



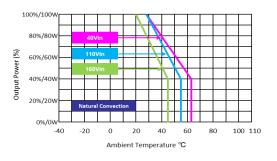
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

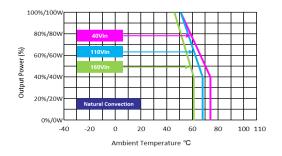

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S24 (continued)



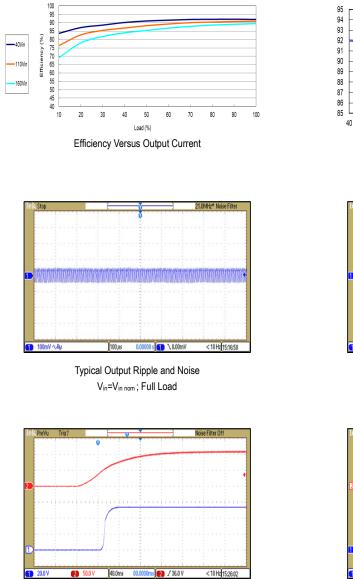
Derating Output Power Versus Ambient Temperature and Airflow



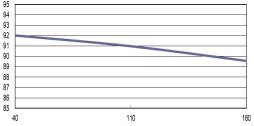

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

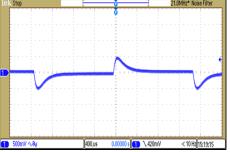
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

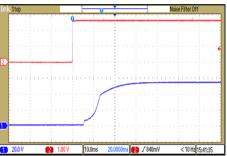


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



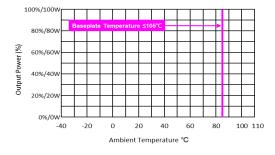
Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S54 $\,$

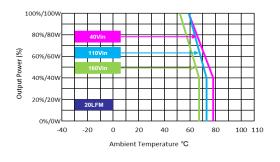

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

Efficiency Versus Input Voltage Full Load

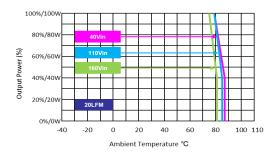
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}



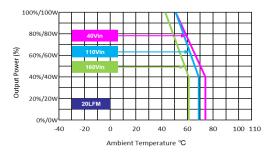
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \!=\! V_{\text{in nom}}$; Full Load

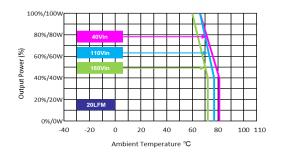

Characteristic Curves

All test conditions are at 25°C The figures are identical for MRZI100-110S54 (continued)



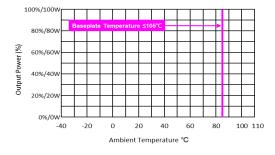
Derating Output Power Versus Ambient Temperature and Airflow



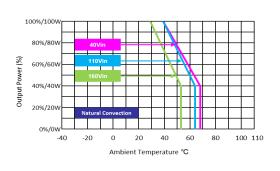

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

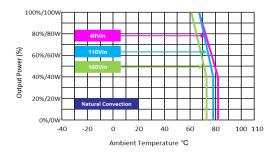
Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

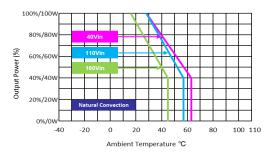


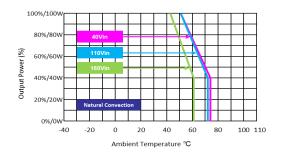
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

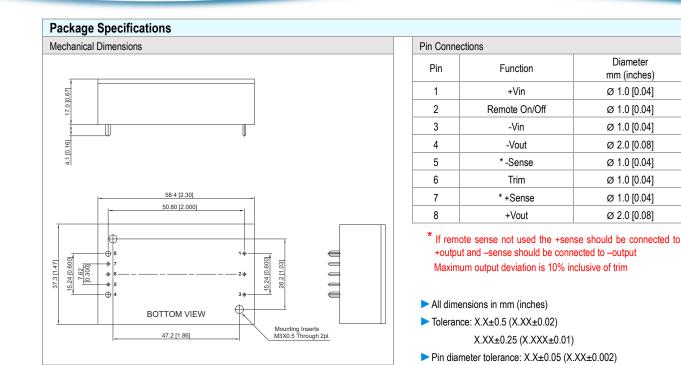


Characteristic Curves


All test conditions are at 25°C The figures are identical for MRZI100-110S54 (continued)

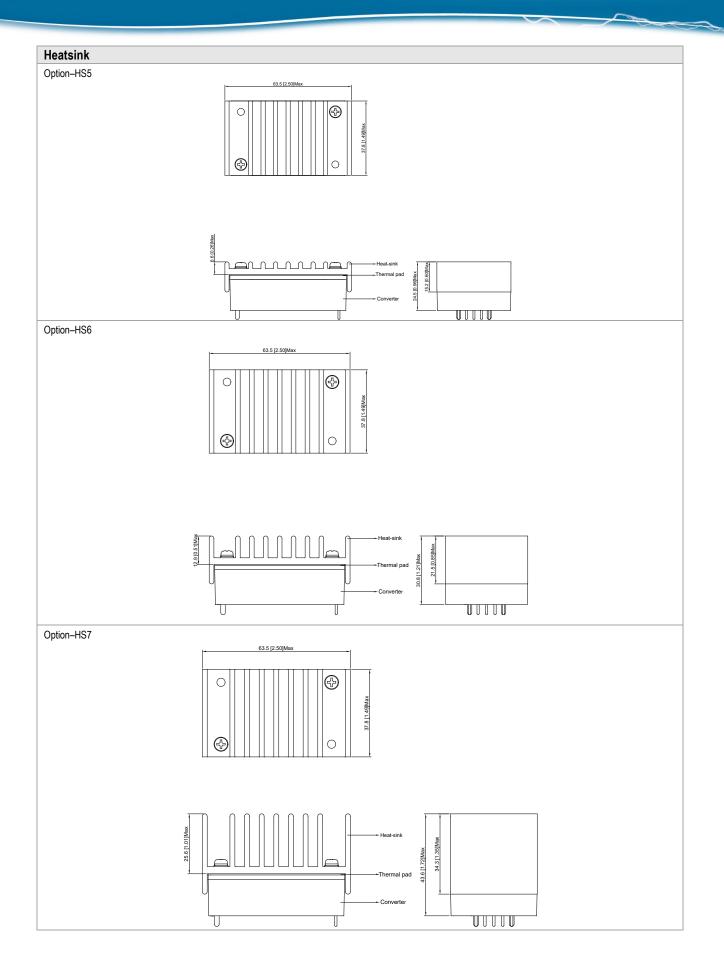

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)


Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

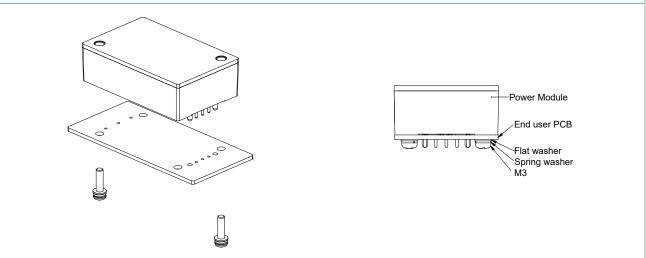
Derating Output Power Versus Ambient Temperature (with HS7 heatsink)



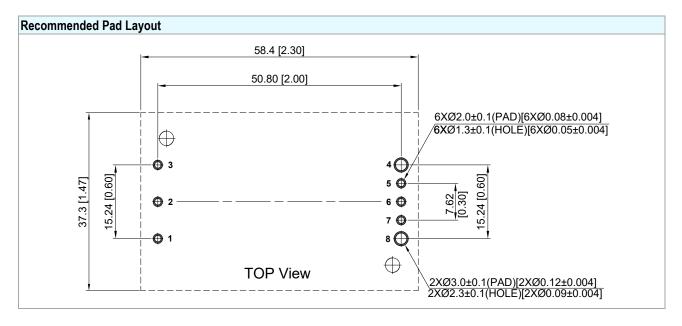
Physical Characteristics

i nyoloal onaraotor		
Case Size	:	58.4x37.3x17.0 mm (2.30x1.47x0.67 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Top Side Base Material	:	Aluminum Plate
Pin Material	:	Copper
Potting Material	:	Silicone (UL94-V0)
Weight	:	107g

Date:2023-02-23 Rev:12



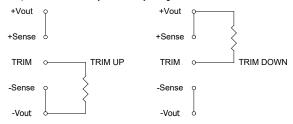
Date:2023-02-23 Rev:12


PCB Installation of End Users

1. Please evaluates mechanical stress (vibration, shock, bump) during field applications.

2. It has to equip with installation kit if escess the guaranteed specifications, please contacts MINMAX for detail information.

3. Applied torque per screw 9 kgf.cm min.

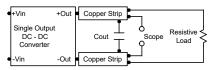


Date:2023-02-23 Rev:12

External Output Trimming

Output can be externally trimmed by using the method shown below

	MRZI100)-110S05	MRZI100)-110S12	MRZI100)-110S15	MRZI100)-110S24	MRZI100	-110S54
Trim Range	Trim down	Trim up	Trim down	Trim up						
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)
1	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14	1,882.57	560.73
2	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02	877.94	230.36
3	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31	543.06	120.24
4	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46	375.62	65.18
5	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55	275.15	32.15
6	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61	208.18	
7	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79	160.34	
8	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18	124.46	
9	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70	96.55	
10	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72	74.23	
11									55.96	
12									40.74	
13									27.86	
14									16.82	
15									7.25	


Date:2023-02-23 Rev:12

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a 22µF polymer capacitor for 5V, 12V, 15V output models and a 33µF polymer capacitor for 24V output model and a 1µF ceramic capacitor for 54V output model. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

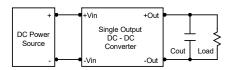
Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Negative logic remote on/off turns the module on during a logic low voltage on the remote on/off pin, and off during a logic high. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum source current at the on/off terminal (Pin 2) during a logic high is 500µA.

Overload Protection

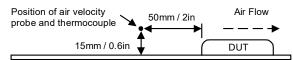

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

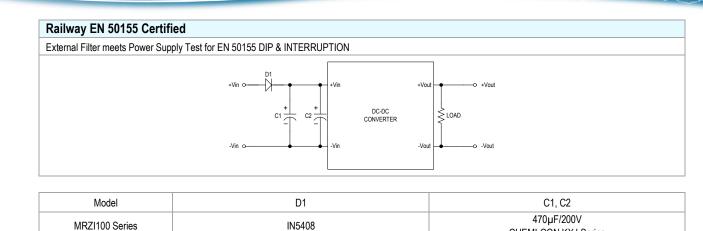
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



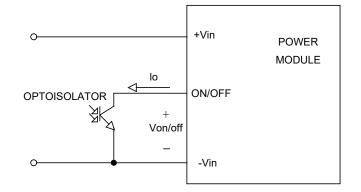
Maximum Capacitive Load

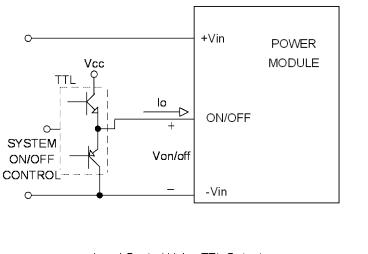
The MRZI100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the baseplate temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

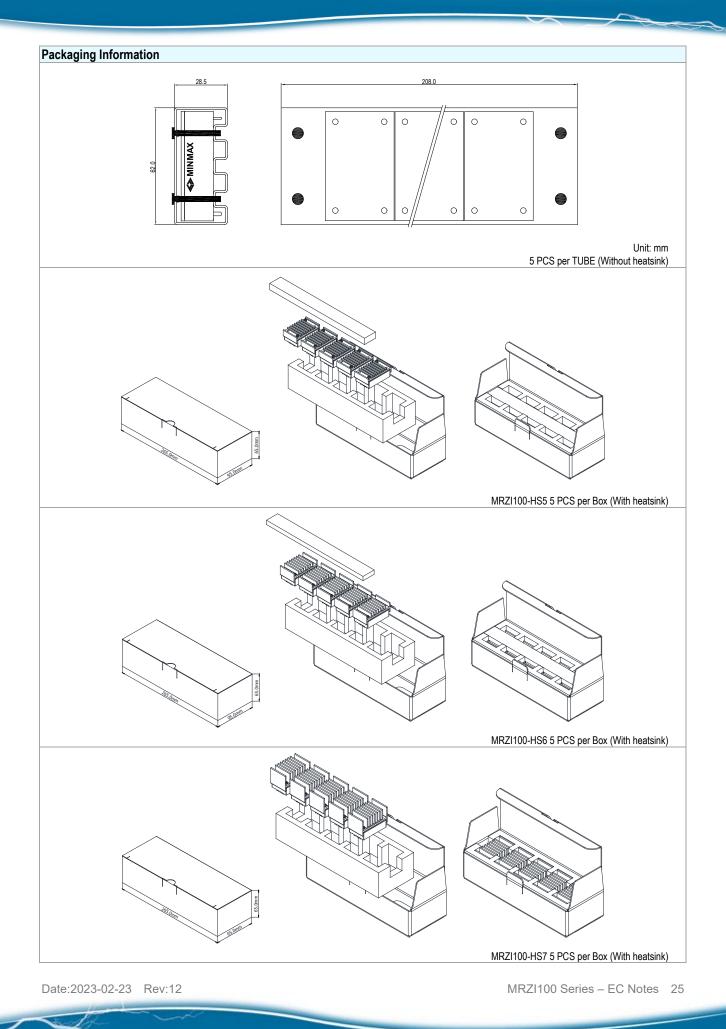
Date:2023-02-23 Rev:12


CHEMI-CON KXJ Series

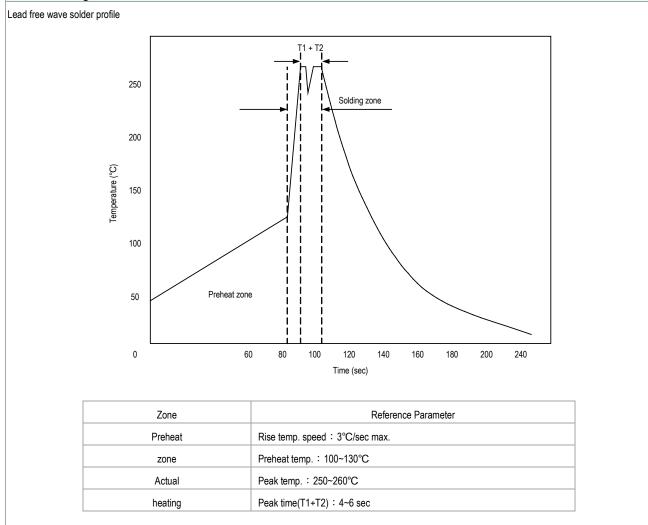

Remote On/Off Implementation

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

The negative logic remote ON/OFF control circuit is included. Turns the module ON during logic Low on the ON/Off pin and turns OFF during logic High. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please short circuit between on/off pin and -Vin pin to turn the module on.


Isolated-Closure Remote ON/OFF

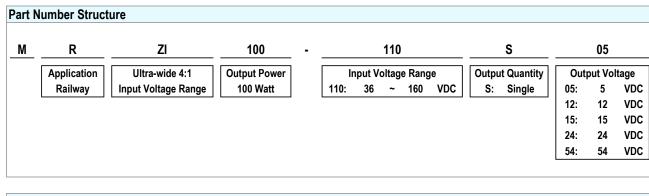
Level Control Using TTL Output


Date:2023-02-23 Rev:12

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag


Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2023-02-23 Rev:12

MTBF and Reliability

The MTBF of MRZI100 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit		
MRZI100-110S05	605,102			
MRZI100-110S12	721,451			
MRZI100-110S15	646,084	Hours		
MRZI100-110S24	692,939			
MRZI100-110S54	773,597	1		

Date:2023-02-23 Rev:12